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Abstract. The need for refined adjustments to nutritional requirements in dairy cow production systems is a demand for 
productive efficiency. Dairy cows face severe physiological and metabolic changes as the end of pregnancy and the 
beginning of lactation, requiring greater attention in nutritional aspects. However, chromium supplementation has been 
suggested to improve the metabolism of carbohydrates, lipids and proteins. Thus giving potential use for dairy cows. In 
this context, the objective was to conduct a literature review on the effects of chromium supplementation on the 
productive performance and metabolism of dairy cows. Therefore, chromium supplementation appears to improve milk 
production without affecting milk constituents. And apparently chromium supplementation reduces the blood 
concentration of NEFA. These results can be explained by a possible improvement in insulin metabolism, promoting an 
increase in insulin sensitivity in adipose tissue, consequently reducing lipolysis. What can change the energy partition in 
the mammary gland improving the processes of milk synthesis. However, many experimental results are contradictory in 
the literature, which can be explained by different stages of lactation, chromium source, stress conditions, 
supplementation period, type and content of carbohydrates in the diet. So in fact, there is a need to conduct a meta-
analysis study with the available database to elucidate the real effect of chromium on the performance and metabolism of 
dairy cows. 
Keywords: Micromineral, Insulin sensitivity, Milk production 

Introduction 
Chromium (Cr) was first described as an 

essential mineral for normal glucose metabolism in 
rats by Schwarz and Mertz (1959) and in humans by 
Jeejebhoy et al. (1977). Apparently, the positive 
responses of Cr supplementation seem to be related 
to the change in the energy partition (Vargas-
Rodriguez et al., 2014; Leiva et al., 2015) due to a 
potentiating effect of the action of insulin (Vincent, 
2001). 

Traditionally, conventional diets were 
supposed to meet the nutritional requirements of Cr 
in farm animals. However, studies suggest that Cr 
supplementation affects glucose and / or lipid 
metabolism (Gentry et al., 1999; Hayirli et al., 2001; 
Sumner et al., 2007). Fact that can be used to 
modulate animal metabolism and improve the 
production of ruminants. 

The demand for Cr is typically increased 
during different forms of stress such as nutritional, 
metabolic and physical (Pechova and Pavlata, 
2007). During the prepartum, delivery, lactogenesis 
and galactopoiesis periods, great metabolic stress is 
generated, causing immunosuppression and 
metabolic overload in dairy cows (Spears, 2000; 
NRC, 2001; Gulpete, 2018). Cr is involved in many 

metabolic functions (Mertz, 1993; Bryan et al., 2004; 
Vargas-Rodriguez et al., 2014) and is essential for 
the normal metabolism of carbohydrates, lipids and 
proteins (Vincent, 2004). 

Therefore, Cr supplementation in dairy cows 
can have positive effects on metabolism and 
productive performance. Thus, the aim was to 
conduct a literature review to assess the effects of 
Cr on the metabolism and performance of dairy 
cows. 

Therefore, Cr supplementation in dairy cows 
can have positive effects on metabolism and 
productive performance. Thus, the aim was to 
conduct a literature review to assess the effects of 
Cr on the metabolism and performance of dairy 
cows. 
 
Contextualization and Analysis 
Chromium 

Cr is a mineral that can be found in very low 
concentrations in natural ingredients commonly 
used in diets for farm animals (Bailey, 2014). It can 
be naturally detected in different oxidation states 
from -2 to +6, however with a greater predominance 
of hexavalent (Cr6+) and trivalent (Cr3+) Cr. Trivalent 
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chromium is the most stable form found in living 
beings, considered a highly safe form of chromium 
(Lindeman, 1996). However, hexavalent chromium 
is mainly of industrial origin and is associated with 
chromium toxicity (Amata, 2013). Currently several 
forms of organic Cr are described in the literature as 
Cr-Propionate, Cr-methionine, Cr-picolinate, Cr-
nicotinic acid complex and Cr-yeast. 

According to Gäbel et al. (1987), the 
absorption of Cr in the rumen is negligible and the 
recovery of Cr in the rumen varies between 92 to 
99%. Although most studies are conducted with 
rats, it has been suggested that Cr absorption 
occurs in the proximal part of the jejunum (Khan et 
al., 2014), duodenum and in the ileum (Chen et al., 
1973). 

Different factors can affect the absorption of 
Cr, however it is well accepted that the absorption 
and bioavailability of organic sources are better than 
inorganic sources (Lukaski, 1999; Zha et al., 2009). 
In the literature it is reported that the bioavailability 
of inorganic Cr is between 1 and 3%, while organic 
Cr is about 10 to 30 times more available (Forbes 
and Erdman, 1983). The low bioavailability of 
inorganic Cr is probably related to the formation of 
non-soluble Cr oxides (Chen et al., 1973; Pechova 
and Pavlata, 2007), due to interference in the ion 
forms of other minerals (Pechova and Pavlata, 
2007), bonding Cr to natural forage compounds 
(Borel and Anderson, 1984; Pechova and Pavlata, 
2007), or the slow conversion of inorganic Cr to 
bioactive form (Ranhotra and Gelroth, 1986). 

 
Chromium role in metabolism 

Currently, it is described that chromium acts 
on the activation of insulin via cromodulin, an 
oligopeptide consisting of glycine, cysteine, 
aspartate and glutamate (Yamamoto, et al., 1987). 
This oligopeptide is a cofactor for the action of 
insulin, mediated by stimulating the activity of 
protein tyrosine kinase, an insulin receptor (Ducros, 
1992; Davis et al., 1996; Davis and Vincent, 1997). 
The stimulating effect of chromodulin seems to 
occur without affecting insulin concentration, 
indicating that this oligopeptide has an intrinsic role 
in insulin sensitivity (Khan et al., 2014), promoting a 
self-amplifying mechanism of insulin signaling 
(Vincent, 2000).  

In adipose tissue, it is suggested that the 
action of insulin is mediated by the activation of 
phosphotyrosine phosphatase in the adipositary 
membrane (Ducros, 1992; Vincent, 2000; Davis et 
al., 1996) increasing glucose uptake. Additionally, 
the activation of this intracellular signaling pathway 
increases the rate of glucose uptake and positively 
regulates the levels of mRNA of the insulin receptor, 
type 4 glucose transporter (GLUT4), glycogen 
synthase and uncoupling protein-3 in skeletal 
muscle cells ( Davis et al., 1996), consequently 
improving insulin sensitivity, increasing the rate of 
glucose and amino acid uptake. 
 
Productive performance 

 Diets for dairy cows can contain sufficient 
concentrations of Cr to meet the demands during a 
normal production period, but can become deficient 
in critical situations such as, late pregnancy, 
delivery, early lactation, weaning and transport 
(Sano et al., 1991; Mousaie et al., 2014; Vargas-
Rodriguez et al., 2014; Yuan et al., 2014). 

In the experiment by Kafilzadeh et al. 
(2012), supplementing chromium in multiparous 
dairy cows at the beginning of lactation, reported 
that MP was not affected. Soltan (2010) and 
Nikkhah et al. (2011) investigating the effect of Cr 
supplementation on the performance of multiparous 
dairy cows reared under heat stress at the 
beginning of lactation, reported that MP and DMI in 
cows supplemented with Cr were greater than the 
control group. Similarly in the experiment by Al-
Saiady et al. (2004) with multiparous dairy cows in 
mid-lactation raised under thermal stress, it was 
reported that DMI and PM were higher for the group 
of cows supplemented with Cr. However, 
experiments using Cr supplementation for dairy 
cows demonstrate inconsistent results (Table 1). 
 
Composition of milk in lactating dairy cows 

Several experiments evaluated the effects 
of Cr supplementation on the milk composition of 
dairy cows (Table 2). In general, it is reported that 
the fat, lactose, protein and non-fat solid content of 
milk was not affected by the addition of Cr in the diet 
(Yang et al., 1996; Soltan, 2010; Vargas-Rodriguez 
et al., 2014; Yasui et al., 2014). However, 
Kafilzadeh et al. (2012) reported that the lactose 
content in milk increased when the diet of 
multiparous dairy cows at the beginning of lactation 
was supplemented with Cr. Al-Saiady et al. (2004) 
reported that Cr levels in the diet did not affect the 
milk composition of multiparous dairy cows stressed 
by heat in the middle of lactation. In contrast 
Nikkhah et al. (2011) reported an increase in 
protein, fat and lactose content with Cr 
supplementation for cows under heat stress. 
However, other investigations have described that 
Cr supplementation did not influence the fat, protein 
and lactose content of milk in primiparous dairy 
cows (Yang et al., 1996; Bryan et al., 2004; Smith et 
al., 2005). 
 
Blood parameters 

There are conflicting reports regarding the 
effects of Cr supplementation on the serum 
parameters of dairy cows (Table 3). Kafilzadeh et al. 
(2012) investigated the effect of Cr supplementation 
on the serum parameters of multiparous dairy cows 
at the beginning of lactation and reported that Cr 
supplementation caused an increase in glucose and 
insulin and decreased concentrations of non-
esterified fatty acids (NEFA), but not there was an 
effect on cortisol by Cr supplementation. Soltan 
(2010) reported that Cr supplementation decreased 
the level of cortisol and NEFA in multiparous dairy 
cows in the prepartum period, although glucose and 
insulin concentrations were not affected. 
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Table 1: Effects of chromium supplementation on performance of lactating dairy cows. 

Parity, lactation stage and period (day) Chromium source and level Results Reference 

Primiparous and multiparous, prepartum (42 
days), and postpartum (21 days) 

Chromium maethionine (0, 6.25 mg/day) MP did not change Bryan et al. (2004) 

Multiparous, prepartum (21 days) Chromium propionate (0, 8 mg/day) DMI and BW did not change Yasui et al. (2014) 

Multiparous, early lactation (63 days) Chromium propionate (0, 8 mg/day) DMI, MP and BW did not change Yasui et al. (2014) 

Multiparous, early lactation (154 days) Chelated chromium (0, 0.5 mg/kg DM) DMI, FBW, and MP did not change Yang et al. (1996) 

Primiparous, early lactation (154 days) Chelated chromium (0, 0.5 mg/kg DM) FBW decreased, but DMI and MP did not change Yang et al. (1996) 

Primiparous, early lactation (154 days) Chelated chromium (0, 0.5 mg/kg DM) MP increased, but DMI and FBW did not change Yang et al. (1996) 

Multiparous, early lactation (154 days) Chelated chromium (0, 0.5 mg/kg DM) DMI, FBW, and MP did not change Yang et al. (1996) 

Primiparous and multiparous, early lactation 
(225 days) 

Chromium propionate (0, 2.5 g/day) MP and FBW did not change Leiva et al. (2015) 

Primiparous and multiparous, early lactation 
(28 days) 

Chromium methionine (0, 0.03, 0.06 mg/kg 
metabolic BW) 

DMI, MP, and BW increased Smith et al. (2005) 

Primiparous and multiparous, prepartum (21 
days) 

Chromium methionine (0, 0.03, 0.06 mg/kg 
metabolic BW) 

DMI and BW did not change Smith et al. (2005) 

Multiparous, prepartum (21 days) and 
postpartum (21 days), early lactation 

Chromium methionine (0, 8 mg/day) MP did not change Kafilzadeh et al. (2012) 

Primiparous and multiparous, early lactation 
(49 days) 

Chromium methionine (0, 0.05, 0.10 mg/kg of 
metabolic BW) 

Fat corrected milk (4%) and DMI increased Nikkhah et al. (2011) 

Multiparous, prepartum (21 days) Reared under heat stress Chromium methionine 
(0, 6 mg/day) 

FBW did not change Soltan (2010) 

Multiparous, early lactation (84 days) Reared under heat stress Chromium methionine 
(0, 6 mg/day) 

MP increased, and DMI in 5–12 weeks postpartum 
increased, but BW did not change 

Soltan (2010) 

Multiparous, prepartum (21 days) Reared under heat stress Chromium propionate 
(0, 10 mg/day) 

DMI did not change McNamara and Valdez 
(2005) 

Multiparous, early lactation (90 days) Chromium propionate (0, 10 mg/day) MP and DMI increased McNamara and Valdez 
(2005) 

Primiparous and multiparous, early lactation 
(35 days) 

Chromium propionate (0, 8 mg/day) DMI increased, but MP did not change Vargas-Rodriguez 
et al. (2014) 

Multiparous, mid lactation (130 days) Chelated chromium (0, 4 g/day) 
Reared under heat stress 

MP and DMI increased Al-Saiady et al. (2004) 

Primiparous and multiparous, prepartum (28 
days) e pospartum (28 days) 

Chromium methionine (0, 0.03, 0.06, 0.12 mg/kg 
metabolic BW) 

Increased DMI and MP increase at a dose of 0.03 Hayirli et al. (2001) 

DM = dry matter, DMI = dry matter intake, MP = milk production, BW = body weight, FBW = final body weight, Metabolic BW = BW0.75. 
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Table 2: Effects of chromium supplementation on milk composition of lactating dairy cows. 

Parity, lactation stage and period (day) Chromium source and level Results (%) Reference 

Primiparous and multiparous, 
prepartum (42 days), and postpartum (21 

days) 

Chromiummethionine (0, 6.25 mg/day) Fat, protein, lactose, and solid not 
fat did not change 

Bryan et al. (2004) 

Multiparous, early lactation (63 days) Chromium propionate (0, 8 mg/day) Fat, protein, lactose, and solid not 
fat did not change 

Yasui et al. (2014) 

Primiparous, early lactation (154 days) Chelated chromium (0, 0.5 mg/kg DM) Fat, protein, lactose, and solid not 
fat did not change 

Yang et al. (1996) 

Multiparous, early lactation (154 days) Chelated chromium (0, 0.5 mg/kg DM) Fat, protein, lactose, and solid not 
fat did not change 

Yang et al. (1996) 

Primiparous, early lactation (154 days) Chelated chromium (0, 0.5 mg/kg DM) Fat, protein, lactose, and solid not 
fat did not change 

Yang et al. (1996) 

Multiparous, early lactation (154 days) Chelated chromium (0, 0.5 mg/kg DM) Lactose and solid not fat decreased, 
but fat and protein did not change 

Yang et al. (1996) 

Primiparous and multiparous, 
early lactation (28 days) 

Chromium methionine (0, 0.03, 0.06 
mg/kg of metabolic BW) 

Fat, protein, lactose, and solid not 
fat did not change 

Smith et al. (2005) 

Multiparous, prepartum (21 days), 
postpartum (21 days), and early lactation 

Chromium methionine (0, 8 mg/day) Lactose and solid not fat decreased, 
but fat and protein did not change 

Kafilzadeh et al. (2012) 

Primiparous and multiparous, early lactation 
(49 days) 

Chromium methionine (0, 0.05, 0.10 
mg/kg of metabolic BW) 

Fat, protein, lactose, and solid not 
fat did not change 

Nikkhah et al. (2011) 

Multiparous, early lactation (84 days) Reared under heat stress Chromium methionine (0, 6 
mg/day) 

Fat, protein, lactose, and solid not 
fat did not change 

Soltan (2010) 

Multiparous, early lactation (81 days) Chromium propionate (0, 10 mg/day) Fat, protein, lactose, and solid not 
fat did not change 

McNamara and Valdez 
(2005) 

Primiparous and multiparous, 
early lactation (35 days) 

Chromium propionate (0, 8 mg/day) Fat, protein, lactose, and solid not 
fat did not change 

Vargas-Rodriguez et al. 
(2014) 

Multiparous, mid lactation (130 days) Chelated chromium (0, 4 g/day) 
Reared under heat stress 

Fat, protein, lactose, and solid not 
fat did not change 

Al-Saiady et al. (2004) 

Primiparous and multiparous, prepartum 
(28 days) e pospartum (28 days) 

Chromium methionine (0, 0.03, 0.06, 0.12 mg/kg 
metabolic BW) 

Fat, protein, lactose, and solid not 
fat did not change 

Hayirli et al. (2001) 

DM = dry matter, BW = body weight, Metabolic BW = BW0.75. 
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Table 3: Effects of chromium supplementation on blood parameters of dairy cows. 

Parity and lactation stage Chromium source and level Results Reference 

Primiparous and multiparous, prepartum 
(42 days), and postpartum (21 days) 

Chromium methionine (0, 6.25 mg/day) NEFA decreased, but glucose and BHB did not 
change 

Bryan et al. (2004) 

Multiparous, prepartum Chromium propionate (0, 8 mg/day) Glucose, insulin, BHB, glucagon, and NEFA did 
not change 

Yasui et al. (2014) 

Multiparous, early lactation Chromium propionate (0, 8 mg/day) Glucose, insulin, BHB, glucagon, and NEFA did 
not change 

Yasui et al. (2014) 

Multiparous, prepartum (21 days) and 
postpartum (21 days), early lactation 

Chromium methionine (0, 8 mg/day) Glucose and insulin increased, NEFA decreased, 
but cortisol did not change 

Kafilzadeh 
et al. (2012) 

Primiparous and multiparous, early lactation 
(210 days) 

Chromium propionate (0, 2.5 g/day) NEFA increased, but glucose did not change Leiva et al. (2015) 

Primiparous and multiparous, early lactation (28 
days) 

Chromium methionine (0, 0.05, 0.10 mg/kg of 
metabolic BW) Reared under heat stress 

Glucose, insulin, glucagon, NEFA, BHB, TG, 
cholesterol, HDL, and VLDL did not change 

Nikkhah et al. (2001) 

Multiparous, prepartum (21 days) Chromium methionine (0, 6 mg/day) 
Reared under heat stress 

Cortisol and NEFA decreased, but glucose and 
insulin did not change 

Soltan (2010) 

Multiparous, early lactation (14 to 84 days) Chromium methionine (0, 6 mg/day) 
Reared under heat stress 

Cortisol and NEFA in 2 and 4 weeks postpartum 
decreased, but glucose and insulin did not change 

Soltan (2010) 

Multiparous, mid lactation (120–130 days) Chromium yeast, (0, 4 mg/day) 
Reared under heat stress 

Glucose did not change Al-Saiady. (2004) 

Primiparous and multiparous, prepartum (21 
days) 

Chromium methionine (0, 0.03, 0.06 mg/kg of 
metabolic BW) 

Glucose, insulin, glucagon, and NEFA did not 
change 

Smith et al. 
(2008) 

Primiparous and multiparous, early lactation (28 
days) 

Chromium methionine (0, 0.03, 0.06 mg/kg of 
metabolic BW) 

Glucose, insulin, glucagon, and NEFA did not 
change 

Smith et al. 
(2008) 

Primiparous and multiparous, early lactation 
lactation (28 days) 

Chromium propionate (0, 8 mg/day) Glucose, insulin, glucagon, and NEFA did not 
change 

Yuan et al. 
(2014) 

Primiparous and multiparous, prepartum (28 
days)  

Chromium methionine (0, 0.03, 0.06, 0.12 mg/kg 
metabolic BW) 

NEFA decreased, but glucose, BHB and insulin 
did not change 

Hayirli et al. (2001) 

Primiparous and multiparous, pospartum (28 
days) 

Chromium methionine (0, 0.03, 0.06, 0.12 mg/kg 
metabolic BW) 

Insulin decreased, but glucose and NEFA, BHB 
did not change 

Hayirli et al. (2001) 

Multiparous, pospartum (15–22 days) Chromium picolinate (0, 3.6, 7.2 and 10.8 
mg/day) 

Increased glucose and insulin An-Qiang (2009) 

DM = dry matter, BW = body weight, Metabolic BW = BW0.75, NEFA = non-esterified fatty acid, BHB = beta-hydroxyl butyrate, TG = triglyceride, HDL = high density lipoprotein, VLDL = very low density 

lipoprotein. 
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However, it was reported that the 

concentrations of glucose, insulin, glucagon, beta-

hydroxybutyrate (BHBA) and NEFA were not 

affected by Cr supplementation in multiparous dairy 

cows during the prepartum period (Yasui et al., 

1996; Smith et al. ., 2008). Similarly, Yuan et al. 

(2014) studied the effect of Cr supplementation on 

some serum parameters in primiparous and 

multiparous dairy cows in mid-lactation, reported 

that the concentrations of glucose, insulin, glucagon 

and NEFA were not affected by Cr supplementation. 

 

Final considerations 

The effects of Cr supplementation for dairy 

cows are inconsistent, making it difficult to 

determine whether Cr supplementation improves the 

productive performance of dairy cows. 

In some studies, the increase in milk 

production may be due to the nutritional correction 

of Cr deficiency or change in the energy partition in 

the metabolism, increasing the energy availability for 

milk synthesis. Another mechanism that should be 

taken into account is that Cr can improve 

gluconeogenesis, thus increasing the use of glucose 

for the synthesis of lactose in the mammary gland, 

consecutively increasing milk production, due to the 

osmoregulatory effect of lactose. 

In general, the composition of the milk does 

not appear to change. However, in relation to blood 

parameters, NEFA is the one with the greatest 

change, promoting a reduction in concentrations. 

These results suggest that a possible action of Cr 

on insulin sensitivity in adipose tissue may occur, 

providing an increase in glucose uptake, 

consequently increasing lipogenesis and reducing 

liquid lipolysis. This effect can help explain the 

energy partition in the metabolism, culminating in 

increased milk production. 

However, the discrepancies between the 

results of the experiments can be explained by 

differences in the lactation stage, chromium source, 

stress conditions, supplementation period, type and 

content of carbohydrates in the diet. Thus, it is 

suggested the need to conduct a meta-analysis 

study with the available published database, to 

assess the real effect of Cr on the performance and 

metabolism of dairy cows. 
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