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______________________________________________________________________________________ 
 
Abstract. The use of the RGB-D camera has been applied in several fields of science. That popularization is due to the 

emergence of technologies such as the Intel
®
 RealSense™ D400 series. However, despite the actual demand from 

some potential users, few studies concern the characterization of these sensors for object measurements. Our study 
sought to estimate models dealing with calculating the area and length between targets or points within RGB and depth 
images.  An experiment was set up with white cardboard fixed on a flat surface with colored pins. We measured the 
distance between the camera and cardboard by calculating the average distance from the pixels belonging to the target 
area. The Information Criterion AIC and BIC associated with R

2
 were performed to select the best models. Polynomial 

and power regression models reached the highest coefficient of determination and smallest values of AIC and BIC. 
Keywords: image processing; depth camera; RealSense™. 

______________________________________________________________________________________ 

 
Introduction  
 Even though RGB-D sensors were 
extensively employed in the past decade, mainly to 
promote human interaction through video game 
consoles, their use for object detection and metric 
measurements in productive activities has been in 
the early stages. Beyond entertainment use, these 
sensors were also used to solve object recognition 
complex problems, including human tracking activity 
(Wang et al., 2014; Basso et al., 2013; Nguyen et 
al., 2014). Nowadays, its characteristics of low-cost 
RGB-D sensor and stable 3D vision technologies 

have been applied to detect animal and agricultural 
targets bringing promising outcomes to activities that 
are currently time-consuming, labor-intensive, and 
expensive work. Studies related to livestock 
production demonstrated a high correlation (R

2
 > 

0.9) between 3D cameras data and manual 
measurements (Hu et al., 2021, Pezzuolo et al., 
2018; Condotta et al., 2018; Kongso, 2014). Most 
RGB-D information is analyzed through regression 
or machine learning models to estimate metric 
measurements, surface area, and volume. 

http://dx.doi.org/10.36560/141120211467
https://sea.ufr.edu.br/SEA/article/view/1467
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 Focusing on this prominent market, Intel®
 

launched the RealSense™ D400 series of RGB-D 
cameras, providing colored image flow and depth 
maps. These cameras rely on an infrared light 
source, which brings improvements in data quality, 
allowing the most reliable outdoor applications, such 

as a tropical environment with a high luminous 

variation (Condotta et al., 2020). Despite its 

potentials, there is little information about 

performance and methodological standards for using 
it so far, which will be crucial for scientific 
applications. The approach implemented by Vit and 
Shani et al.,2018 used Euclidean distance in the 3D 
plane to measure artificial objects' size while Hu et 
al., 2021 extracted length and width from RGB-D 
images of non-restrained pigs using primary pixel 
count. 

 This work aimed to develop and validate 
mathematical models.s to perform area estimation 
and metric measurements using the depth and color 
images from an RGB-D camera. 

 
Materials and Methods 
 The study was carried out at SIGEO 
Laboratory in Embrapa Agrosilvopastoral, Sinop - 
Mato Grosso State, Brazil. In order to obtain the 
relation between the target pixel area and depth 
images at the RGB-D camera, an experiment was 
set up: a white cardboard was fixed to a flat surface 
with colored pins (Fig. 1), perpendicular to the 
camera. The cardboard had 0.33 m

2
 and was the 

planar target for further considerations. Pins were 
attached to form a spatial grid and support 
horizontal, vertical, and diagonal measurements. 

 An Intel
®
 RealSense

™
 D435i camera 

captured images of the cardboard and its 
surroundings in the lab illuminated by fluorescent 
light of approximately 5 watts. The D435i model of 
RealSense technology was chosen because of its 
larger field of view (FOV) and superior global shutter 
performance compared to D415 models. These 
characteristics deal accordingly with blind spots 

reduction and high-speed movements. Furthermore, 
the configuration of internal settings, including 
acquisition and post-processing, is supported by a 
cross-platform and open-source Intel RealSense 
SDK 2.0 (Cargagni et al., 2019). RGB-D data 
streams from the camera were stored in a rosbag 
file using in-house software written in C ++. Later, 
depth and color frames were extracted from the 
rosbag file in comma-separated values (.csv) and 
Portable Network Graphics (.png) formats, 
respectively. The depth array was processed using 
the OpenCV library and Python language. Finally, 
the camera was configured following the 
recommendations of Intel RealSense (2018), 
composed of images with a resolution of 848 x 480 
pixels, medium density, and presettable from the 
“HighResMedDensityPreset.json" file. Related to 
better resolution configuration, Study from Vit and 
Shani, et al.,2018 found that object size identification 
resulted in minor errors at 848 resolution with depth 
information while 640 resolution was able to identify 
with accuracy objects through RGB images. For 
distance measurements on the white cardboard, 13 
reference dots formed 33 measurements equally 
distributed between vertical, horizontal, and diagonal 
alignments (Fig. 1a). 

 The camera was then placed at 17 
increasing distances, from 0.9 m to 2.5 m, with a 
step of 0.1 m. Although this camera has a 
measuring range of up to 10 m, a maximum distance 
of 2.5 m was chosen because this range had 
satisfactory sensitivity to agriculture applications, 
similar to observed by Condotta et al. (2020). Both 
RGB and depth images were simultaneously 
acquired at each distance. Surface cardboard length 
was measured; however, only the diagonal was 
considered for distance measurements among 
predetermined dots for depth images. In this case, 
the distance between the camera and the cardboard 
was calculated through the depth image without 
performing stream alignment. One example of 
images captured from the RGB and depth sensors 
are shown in Figure 1. 

 

Figure 1. Sample images captured from RGB-D sensor. a) Color image (RGB) showing horizontal and vertical reference 

dots fixed on the cardboard at 0.9 m from the sensor, b) depth image showing the distance from the object to the sensor 
on a colored scale.  

Mathematical modeling and accuracy assessment 
 To verify Intel

®
 RealSense

™
 D435i camera's 

suitability for metric measurements as the best 

mathematical model to correlate digital and manual 
measurements of distance and area, four distinct 
mathematical models were compared: linear, 
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logarithmic, polynomial, and power. For this reason, 
statistical analysis was performed to assess the 
accuracy of models where the best fit model should 
emphasize the robustness criteria and 
computational simplicity. This study has employed 
three statistical analyses: coefficient of 
determination (R

2
), Akaike Information Criterion 

(AIC) (Akaike, 1974), and the Bayesian Information 
Criterion (BIC) (Stone, 1979). AIC and BIC compare 
candidate models. These techniques are based on 
an in-sample fit to estimate a model's log-likelihood 
and its complexity to predict future values, as shown 
by equations 4 and 5, respectively. Therefore, the 
models achieving the lowest values of AIC and BIC 
are considered the best models. The coefficient of 
determination (R

2
) is a well-known technique that 

quantifies the proportion of variance explained by a 
statistical model through measured (Am) and 
estimated (Ae) pixels area or distance. 

     
   

   
   (1) 

                             
  

      (2) 

                             
  

     (3) 

where: 

    = measured values; 

      = estimated values of   ; 

     = mean of the    values; 

 n     = number of images. 

           (4) 

where: 

 LL = maximum value of log-likelihood function of 
the model; 

 k   = number of estimated parameters. 

               (5) 

where: 

LL = maximum value of the log-likelihood function of the 
model; 

n   = number of recorded measurements or sample size; 

k   = number of estimated parameters. 

where: 

LL = maximum value of the log-likelihood function of the 
model; 

n   = number of recorded measurements or sample size; 

k   = number of estimated parameters. 

 
Model validation 
 For model validation purposes, area and 
length best-fit equations were applied to assess 
measured and predicted length, width, and area at 
the three corrugated paper boxes with a defined 
size. 
 We categorized boxes sizes as Large 
(73x46 cm), Medium (4 x32 cm), and Small 
(24x22cm). The objects were positioned 
perpendicularly to the camera and sampled 
individually over three distances, 1.01 m, 1.54 m, 
and 2 m. 

 The difference of the actual boxes’ length 
and boxes´ width was computed from the same 
measurements captured by the sensor using depth 
and RGB images dimensions. The goal in the 
validation step was to evaluate RGB-D sensor 
capability to register sizes on best-fit equations. 
Lately, a paired t-test was applied to assess 
significant differences in box surface area and sides 
measurements. 

 The individual area was evaluated for each 
image acquired between the camera sensor´s and 
the studied scenario at increasing distances. The 
boxes' area variations were evaluated by increasing 
the distance between the camera and the studied 
scenario. Similarly, the differences in actual area 
and acquired by sensor were compared. The area 
validation was only applied on depth images at three 
size boxes over different distances. 
 

Results and discussion  
Models Development 

 From 0.9 m to 2.5 m, the cardboard area 
ratio (m

2
/pixel) was recorded and translated from 

pixels to metric units for each distance range. 
Figures 2 and 3 show the trend lines and best 
equations adjusted by linear, logarithmic, 
polynomial, and power models. Equations 6 and 7 
were rewritten because they obtained the highest 
coefficient of determination associated with model 
simplicity to calculate area in depth and RGB 
images. As can be observed from these figures, for 
both depth and RGB images, power and polynomial 
models were the best to fit experimental data (R

2
 = 

1, p-value < 0.001) 

.                        (6) 

where: 

Am = area in square meters, 

Ap = area of one pixel assuming Ap =1; 

x = distance from the sensor to the object varying from 0.8 
m to 2.5m. 
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Figure 2. Relationship of area ratio (m

2
/px) from RGB image over different distances fitted with different models and 

distances. 

 

                        (7) 

where: 

 Am = area in square meters  

      = distance of the camera to the object; 

 Ap = area in pixels that should be replaced by 1 
and multiplied by the number of pixels associated with a 
specific distance from the sensor. (Ap = 1 in eq.  7), 

especially when the target has an irregular surface. 

 Up to 2 meters, there is significant variation 
of length in both types of images, as observed in 
figures 4 and 5. In this case, the sensor recorded a 
few segments with the supposed same length with 

slightly different lengths. Also, the difference 
increases as the sensor is moved away from the 
target. The errors of vertical and horizontal 
measurements are likely different, and this 
difference increases with the distance (Intel 
RealSense, 2019). The study of Carfagni et al. 
(2017) corroborates this finding and describes it as 
systematic errors on the Intel SR300 sensor. In 
homogeneous distance errors cause both length and 
area measurement inconsistencies. These errors 
are mainly due to the sensor's limitations to perceive 
the target as planar and depth offset. Choo (2015) 
and Condotta et al. (2020) reported a similar 
behavior with a Microsoft Kinect

®
 sensor. The 

stochastic nature of the error is mainly affected by 
the depth of the object in the scene. Furthermore, 
radial errors cause little distortion, which explains 
greater variation at depth images compared to 
colored. 
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Figure 3. Relationship of area ratio (m
2
/px) from RGB image over different distances fitted with different models and 

distances. 
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Figure 4. Relationship between length measurements obtained within depth image and distance from the sensor fitted 

by different models. 

 

                          (8) 

where: 

 Dcm = distance in centimeters within cardboard 
reference points; 

 Dp   = distance in pixels; 

 X    = distance of the camera to the object. 
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Figure 5. Relationship between length measurements obtained within the color image (RGB) and distance from the 

sensor -fitted by different models. 

                         (9) 

where: 

    = distance in centimeters within cardboard reference 

points; 

Dp    = distance in pixels; 

       = distance of the camera to the object using data 

from an associated colored image. 

 

 Similarly, from Figures 4 and 5 it can be 
inferred that polynomial and power models obtained 
a high coefficient of determination (R

2
 > 0.98). 

Applying the criterion that the model with the 
minimum values of AIC and BIC linked with the 
highest R

2
 was the optimal model chosen, the 

polynomial approach was the best for both models 
of area and length from depth or color images, as 
shown in Table 1. Power model were the second-
best option. 
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Table 1. Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) results of four mathematical 

models tested for measuring area and length in depth and RGB images. The minimum values of AIC and BIC, which 
correspond to the most suitable model, are bold. 

  Models 

Measurement/Image Type  Linear Logarithmic Polynomial Power 

Area/Depth  

AIC 

-416 -389 -481 -480 

Area/RGB -419 -391 -436 -434 

Length/Depth -304 -295 -320 -309 

Length/RGB -277 -257 -279 -278 

Area/Depth  

BIC 

-414 -387 -478 -478 

Area/RGB -417 -389 -433 -432 

Length/Depth -298 -289 -312 -303 

Length/RGB -271 -251 -271 -272 

 

  

Models Validation 
 Paired t-test compared box’s length or width 
measurements from RGB and depth images 
resulted in no statistically significant difference (p < 
0.05) in any box size and distance from the sensor. 
The mean difference at length estimates suggests 
an increment of 1.62 cm for RGB images compared 
to depth images. Also, the mean difference in box’s 
width estimations showed a decrement of 1.3 cm for 
RGB images compared to depth images. This result 
agrees with the satisfactory performance of 
equations generated in this study to estimate linear 
measurements (e.g., length and width) from both 
image formats. 
 For validation purposes, we computed the 
power mathematical regression models (eq. 6, 7, 8, 
and 9) at three different box´s sizes dealing with 
estimating area (cm

2
), width and length (cm). The 

highest errors measurements (Digital estimated 

value – Analogic measured value) were found in 
depth images compared to RGB images values. 
This means that real box dimensions were over and 
underestimated in all observed distances (Fig. 6 a). 
In particular, at a 1.5 m distance from the camera 
sensor, errors from depth images were closer to 
zero, except length measurement at the large box.  
For RGB images, in general, measurements at the 
closest distance (1 m) had the lowest errors 
compared to further distances (2m). Also, estimated 
values were underestimated at closer distances and 
overestimated at farther distances for small and 
medium boxes. 

 Considering the boxes' width, Figure 6b 
shows that depth and RGB images from small and 
medium boxes present a lesser difference than the 
larger box at three distances. Generally, those 
results agree with Khoshelam (2012) results using a 
Microsoft Kinect® sensor. 

 

 

 
Figure 6. The validation process of distance estimation comparing difference box’s width length and, in cm, from Large 

(L), Medium (M) and, Small (S) boxes obtained from the depth and RGB images using equations 8 and 9, respectively. 
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 Figure 7 shows that the highest absolutes 
area error was found in large box considering all 
distances and both types of images (RGB image = 
238 cm

2
 and Depth image=259 cm

2
). However, 

when we calculate the proportional error, taking into 
account the actual area box as a unit, we found out 
that, generally, in RGB images, the estimated areas 
of the three types of boxes were lower than actual 
areas up to 1.5 m, varying from 0.64 % to 6.7 %. On 
the other hand, at 2 meters of distance from the 

camera, the area values were greater and varied 
from 3.2 % to 7.4 %. Nevertheless, considering the 
depth image, the area estimated overall from depth 
images was greater than the actual boxes' area for 
each distance. The only exception was a large box 
distant 1.5 m, where the measured area was 
underestimated by 10%. 

 

 

 

 

Figure 7. Area error (cm
2
) between measured paper boxes area in RGB and depth images obtained at different 

distances with equation 6. 

 

Conclusion  
 RGB-D sensor is becoming essential to 
diverse industrial and agricultural applications that 
need to measure the within area and distance to 
specific targets. This paper presents best-fit models 
for area and length using Intel

®
 RealSense™ D345i 

sensor in RGB and depth images.  We estimated 
mathematical models from recorded, both RGB and 
depth, images at incremental distances. This study 
suggested that the polynomial and power regression 
model obtained the combination of a high coefficient 
of determination (R

2
 > 0.9) and minimum values of 

AIC and BIC. However, considering model simplicity, 
We might say the power regression model has fewer 
computational demands, which in the on-the-fly 
automatic application can be the best option.  Those 
models are either recommended in Condotta et al. 
(2020) study. The validation step has shown that 
objects with large areas, despite their distance from 
RGB-D sensor, demonstrated larger errors than 
actual areas. Until 1.5 m the area on both RBG and 
depth images was underestimated, and at 2 meters 
from the sensor, they were overestimated. The area 
at medium and small targets had fewer errors than 
large objects, reaching 64 cm

2
 of error. The main 

limitations of this experimental setup are: i) the small 
scale of the area target (0.33 m

2
), which for targets 

much greater than can be challenging; (ii) the 

restricted range of the sensor (0.8 - 2.5 m).  We will 
plan to tackle these constraints in future studies and 
targets with other complex morphological features. 

Acknowledgment 
 Embrapa and Fundo Amazônia Project funded 
this research. We want to thank technical support from 
Embrapa Agrosilvopastoral.   
 
References   
BANGLI, L.; HAIBIN, C.; ZHAOJIE, J.; HONGHAI, L. 
Bangli. L.; Haibin. C.; Zhaojie. J.; Honghai. L. RGB-
D sensing-based human action and interaction 
analysis: a survey. Pattern Recognition, vol., 94, p.  
1–12, 2019. 

BASSO, F. MUNARO, M.; MICHIELETTO, S. 
Basso, F.; Munaro, M.; Michieletto, S.; et al. Fast 
and robust multi-people tracking from RGB-D data 
for a mobile robot. Advances in Intelligent Systems 
and Computing, vol. 193, p. 265–276, 2013. 

CARFAGNI, M.; FURFERI, R.; GOVERNI, L.; 
SERVI, M.; UCCHEDDUU, F.; VOLPE, Y. On the 
Performance of the Intel SR300 Depth Camera: 
Metrological and Critical Characterization. In: IEEE 
Sensors Journal, vol. 17, p. 4508-4519, 2017. doi: 
10.1109/JSEN.2017.2703829. 



Dos Santos et al. Mathematical models for metric features extraction from RGB-D sensor images 

85 

 

CHOO, B.; DeVORE, M.D.; BELING, P.A. Statistical 
models of horizontal and vertical stochastic noise for 
the Microsoft Kinect™ sensor. In: IECON 2014 - 
40th Annual Conference of the IEEE Industrial 
Electronics Society, Dallas, TX, 2014, p. 2624-2630, 
doi: 10.1109/IECON.2014.7048876. 

CONDOTTA, I.C.F.S.; BROWN-BRANDL, T.M.; 
SILVA-MIRANDA, K.O. Evaluation of using a depth 
sensor to estimate the weight of finishing pigs. In: 
8th European Conference on Precision Livestock 
Farming, 2017, Nantes, 2017. vol. 1. p. 495-502. 

CONDOTTA, I.C.F.S.; BROWN-BRANDL, T.M.; 
SOUZA, R.V.; SILVA-MIRANDA, K.O. Using an 
artificial neural network to predict pig mass from 
depth images. In: 10th International Livestock 
Environment Symposium (ILES X), 2018, Omaha, 

NE. 2018. 

CONDOTTA, I.C.F.S.; BROWN-BRANDL, T.M.; 
SOUZA, R.V.; SILVA-MIRANDA, K.O.; STINN, J.P. 
Evaluation of a depth sensor for mass estimation of 
growing and finishing pigs. Biosyst. Eng., vol. 173, p. 
11–18, 2018a. doi: 
10.1016/j.biosystemseng.2018.03.002. 

CONDOTTA, I.C.F.S.; BROWN-BRANDL, T.M.; 
PITLA, S.K.; STINN, J.P.; SILVA-MIRANDA, K.O. 
Evaluation of low-cost depth cameras for agricultural 
applications. Computers and Electronics in 
Agriculture, vol.173, 2020 

Intel
®
 Realsense

™
. User guide Intel Realsense D400 

series/SR300 viewer. Revision 002, (2018). 

Intel
®
 RealSense

™
. Lib. Realsense: D400 Series 

visual presets. 2.0 [San Francisco]: GitHub, 2019. 1 
Phone code library. Available in: < 
https://github.com/IntelRealSense/librealsense/tree/
master/examples/align < Access in: 02 mar 2020. 

KHOSHELHAM, K.; ELBERINK, S.O. Accuracy and 
resolution of Kinect depth data for indoor mapping 
applications. Sensors, vol. 12, p. 1437-1454, 2012.  

KONGSO, J. Estimation of pig weight using a 
Microsoft Kinect prototype imaging system. 
Computers and Electronics in Agriculture, vol. 39, p. 
32–35, 2014. 

LAI, K.; BO, L.; REN, X.; FOX, D. A large-scale 
hierarchical multi-view RGB-D object dataset. In: 
IEEE International Conference on Robotics and 
Automation, Shanghai, 2011, p. 1817-1824. doi: 
10.1109/ICRA.2011.5980382. 

NGUYEN, T.V.; FENG, J.; YAN, S. Seeing human 
weight from a single RGB-D image. Journal of 
Computer Science and Technology, vol. 29, p. 777–
784, 2014.  

PEZZUOLO, A.; GUARINO, M.; SARTORI, L.; 
GONZÁLEZ, L.A. On-barn pig weight estimation 
based on body measurements by a Kinect v1 depth 
camera.  Computers and Electronics in Agriculture, 
vol. 148, p. 29-36, 2018. 

VIT, A.; SHANI, G. Comparing RGB-D Sensors for 
Close Range Outdoor Agricultural Phenotyping. 
Sensors. 2018, 18, 4413. 

YU, H.; LEE, K.; MOROTA, G. Forecasting dynamic 
body weight of non-restrained pigs from images 
using an RGB-D sensor camera. Translational 
Animal Science. 2021, vol.5:1, txab006, 
https://doi.org/10.1093/tas/txab006 

WANG, S.; PAN, H.; ZHANG, C.; TIAN, Y. RGB-D 
image-based detection of stairs, pedestrian 
crosswalks and traffic signs. J. Vis. Commun. Image 
Representation, vol. 25, p. 263-272, 2014. 

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

