Toxicity and genetic analysis of Scaptotrigona bipunctata Lepeletier, 1836 contaminated with the pyrethroid cypermethrin


  • N. C. Pereira Universidade Estadual de Maringá
  • T. O. Diniz Universidade Estadual de Maringá
  • M. C. C. Ruvolo-Takasusuki Universidade Estadual de Maringá



stingless bee, esterase, protein, sublethal effects


Stingless bees are important pollinators for the native forest of tropical and subtropical regions, predominantly in Latin America. This group contains more than 300 species, many of them native from Brazil. Their colonies present various types of structures, formats and materials. Scaptotrigona bipunctata (Lepeletier, 1836) is a species of stingless bee that builds large colonies within tree trunks. They are ecologically important as pollinators, maintaining the ecological balance. However, studies indicate that the number of bees has been decreasing drastically over the years due to habitat destruction and intensive use of agrochemicals. High doses of insecticides can lead to the death of bees, but low concentrations may promote behavioral changes that affect the colonies and its services to ecosystem and agricultural crops. Around 40% of all insecticides applied in Brazil are toxic to bees. Cypermethrin insecticide belongs to the pyrethroid group and it is widely used in several crops, such as cotton, potato, coffee, maize and tomato. This study aimed to investigate the mortality rate, alterations in total protein and esterase expression in S. bipunctataafter contamination by ingestion and contact with cypermethrin. At the end of the bioassays, there was found a low mortality rate, however, sublethal effects were expressive. Esterases showed different expression patterns after contamination, both by ingestion and contact and total protein analysis presented changes in expression, as well.


Aizen MA, Garibaldi LA, Cunningham SA, Klein AM (2008) Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Current Biology 18:1572-1575.

Aldridge WN (1953) Serum esterases. I. Two types of esterase (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate and a method for their determination. Biochemical Journal 53:110-117

Alfenas AC (2006) Eletroforese e marcadores bioquímicos em plantas e microrganismos. UFV, Viçosa

Atkins EL, Kellum D (1985) Comparative morphogenesis and toxicity studies on the effect of pesticides on honeybee brood. Journal of Apicultural Research 24:245-255.

Bendahou N, Fleche C, Bounias M (1999) Biological and Biochemical Effects of Chronic Exposure to Very Low Levels of Dietary Cypermethrin (Cymbush) on Honeybee Colonies (Hymenoptera: Apidae). Ecotoxicology and Environmental Safety 44:147-153.

Braga Ia, Valle D (2007) Aedes aegypti: inseticidas, mecanismos de reação e resistência. Epidemiologia e serviços em saúde pública. Revista do Sistema Único de Saúde, 16:279-293.

Brittain C, Potts SG (2011) The potential impacts of insecticides on the life-history traits of bees and the consequences for pollination. Basic and Applied Ecology 12: 321-331.

Calderón-Arguedas Ó, Troyo A (2016) Evaluación de la resistencia a insecticidas en cepas de Aedes aegypti (Diptera: Culicidae) de la Región Caribe de Costa Rica. Revista Cubana de Medicina Tropical 68:95-104

Clark SL, Ogle RS, Gantner A, Hall Jr LW, Mitchell G, Giddings J, Mccoole M, Dobbs M, Henry K, Valenti T (2015). Comparative sensitivity of field and laboratory populations of Hyalella azteca to the pyrethroid insecticides bifenthrin and cypermethrin. Environmental Toxicology 34:2250-2262.

Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology 15:615-636.

Claudianos C, Ranson H, Johnson RM, Biswas S, Shuler MA, Berenbaum MR, Feyereisen R, Oskeshott JG (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology 15:615-636.

Cox RL, Wilson TW (1984) Effect of permethrin on the behaviour of individually targeted honeybees, (Apis mellifera). Environmental Entomology 2:375-378

Dai P, Wang Q, Sun J (2010) Effects of sublethal concentrations of bifenthrin and deltamethrin on fecundity, growth, and development on the honeybee Apis mellifera ligustica. Environmental Toxicology and Chemistry 29:644-649.

Decourtye A, Devillersb J, Cluzeauc S, Charretona M, Pham-Delègue M (2004) Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicology and Environmental Safety 57:410-419.

Delabie J, Bos C, Frota C, Masson C (1985) Toxic and repelente effects of Cypermethrin on the honeubee: laboratory, glasshouse and field experiments. Pesticide Science 16:409-415.

Delaplane KS, Mayer DR, Mayer DF (2000) Crop Pollination by Bees. CABI Publishing, London

Ding Z, Wen Y, Yang B, Zhang Y, Liu S, Han Z (2013) Biochemical mechanisms of imidacloprid resistance in Nilaparvata lugens: over-expression of cytochrome P450 CYP6AY1. Insect Biochemistry and Molecular Biology 43:1021-1027.

Feo ML, Ginebreda A, Eljarrat E, Barcelo D (2010) Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. Journal of Hydrology 393:156-162.

Frazier M, Mullin C, Frazier J, Ashcraft S (2008) What have pesticides got to do with it? American Bee Journal 148:521-523

Freitas BM, Pinheiro JN (2010) Efeitos sub-letais dos pesticidas agrícolas e seus impactos no manejo de polinizadores dos agroecossistemas brasileiros. Oecologia Australis 14:282-298

Freitas BM, Pinheiro JN (2012) Polinizadores e Pesticidas: Princípios de Manejo para os Agroecossistemas Brasileiros. MMA, Brasília

Hemingway J, Hawkes NJ, Mccarroll L, Ranson H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 34:653-665.

Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annual Review of Entomology 45:371-391.

Hoy M (2003) Insect molecular genetics. Academic Press, London

Li X, Schuler MA, Berenbaum MR (2007) Molecular Mechanisms of Metabolic Resistance to Synthetic and Natural Xenobiotics. Annual Review of Entomology 52:231-253.

Lins ACS, Silva TMS, Câmara CA, Silva SEM, Freitas BM (2003) Flavonóides isolados do pólen coletado pela abelha Scaptotrigona bipunctata (canudo). Revista Brasileira de Farmacognosia 13:40-41.

Macías-Macías O, Chuc J, Ancona-Xiu P, Caunich O, Quezada-Eúan JJG (2009) Contribuition of native bees and Africanized honey bees (Hymenoptera: Apoidea) to solenaceae crop pollination in tropical México. Journal of Applied Entomology 133:456-465.

Miao Y, He N, Jun-Jie Z (2010) History and New Developments of Assays for Cholinesterase Activity and Inhibition. Chemical Reviews 110:5216-5234.

Montella IR, Schama R, Valle D (2012) The classification of esterases: an important gene family involved in insecticide resistance - A Review. Memórias do Instituto Oswaldo Cruz 107:437-449.

Moreira, DR, Gigliolli, AAS, Falco, JRP, Julio, AHF, Volnistem, EA, Chagas F, Toledo, VAA, Ruvolo-Takasusuki, MCC (2018) Toxicity and effects of the neonicotinoid thiamethoxam on Scaptotrigona bipunctata lepeletier, 1836 (Hymenoptera: Apidae). Environmental Toxicology

Pacheco WF, Alves JE, Ribeiro MF, Freitas BM (2008) Comportamento alimentar de Scaptotrigona bipunctata (Hymenoptera, Apidae, Meliponini) em três Municípios do Estado do Ceará. Disponível em: Accessed 12 September 2018




Como Citar

Pereira, N. C., Diniz, T. O., & Ruvolo-Takasusuki, M. C. C. (2021). Toxicity and genetic analysis of Scaptotrigona bipunctata Lepeletier, 1836 contaminated with the pyrethroid cypermethrin. Scientific Electronic Archives, 14(1), 59–66.



Ciências Biológicas

Artigos mais lidos pelo mesmo(s) autor(es)

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.