Adventitious rooting induction of mulberry (Morus sp.) cuttings by sound frequencies and spermidine at different times

Autores

  • L. C. Dias Universidade Federal de São João del Rei - Campus Sete Lagoas
  • A. M. Silva Junior
  • A. C. A. S. Pires

DOI:

https://doi.org/10.36560/14220211287

Palavras-chave:

biomechanics, mecanosensitivity, polyamines, propagation

Resumo

The use of sound frequencies has been reported to influence physiological and morphogenic responses in plants. Thus, the present work sought to study the effect of different sound frequencies on the adventitious rooting of mulberry cuttings (Morus sp.). Two experiments were carried out, the first consists treatment of cuttings by sound frequencies of 300 Hz, 1000 Hz or 0 Hz in two seasons - spring and autumn. For the second experiment, the frequency of 1000 Hz was used combined with inoculation of spermidine. After 60 days of inoculation, the parameters of the number and length of roots were evaluated, as well as the bud’s development in the aerial part. The treatment of cuttings collected during the autumm with a sound frequency of 1000 Hz results in an increase in the number of roots in relation to the control. In the cuttings collected during the spring there was no increase, either in the exposure with frequency of 1000 Hz, or in the treatment with spermidine, alone or in combination with frequency. The treatment of cuttings with sound frequencies of 1000 Hz demonstrates the potential for an increase in the adventitious rooting response

Referências

ALCANTARA, G.B., RIBAS, L.L.F., HAGA, A.R., RIBAS, K.C.Z., KOEHLER, H.S. Effect of seedling age and season on rooting of Pinus taeda L. minicuttings. Revista Árvore. 31, (3): 399-404. 2007.DOI:10.1590/S0100-67622007000300005

BASU, D., HASWELL, E.S. Plant mechanosensitive ion channels: an ocean of possibilities. Current Opinion in Plant Biology. 40: 43–48. 2017.DOI: 10.1016/j.pbi.2017.07.002

California Rare Fruits Growers. Disponível em: https://www.crfg.org/pubs/ff/mulberry.html Acess april, 17, 2020

DA COSTA, C.T., ALMEIDA, M.R., RUEDELL, C.M., SCHAWAMBACH, J., MARASCHIN, F.S., FETT-NETO, A.G. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Frontiers in Plant Science (2013).DOI:10.3389/fpls.2013.00133

DRUEGE, U., HILO, A., PEREZ-PEREZ, J.M., KLOPOTEKL, Y., ACOSTA, M., SHAHINNIA, F., ZERCHEL, S., FRANKENL, P., HAJREZAEI, M.R. Molecular and physiological control of adventitious rooting in cuttings: phytohormone action meets resource allocation. Annals of Botany, 123: 929–949. 2019.DOI: 10.1093/aob/mcy234

EMER, A.A., ACHAFER, G., AVRELLA, E.D., DELAZERI, M., VEIT, P.A., FIOR, C.S. Influence of indolebutyric acid in the rooting of Campomanesia aurea semihardwood cuttings. Ornamental Horticulture, 22 (1): 94-100. 2016.DOI: 10.14295/oh.v22i1.855

FERNANDEZ-JARAMILLO, A.A., DUARTE-GALVAN, C., GARCIA-MIER, L., JIMENEZ-GARCIA, S.N., CONTRERAS-MEDINA, L.M. Effects of acoustic waves on plants: An agricultural, ecological, molecular and biochemical perspective. Scientia Horticulturae, 235: 340–348. 2018. DOI: 10.1016/j.scienta.2018.02.060

FUKUDA, D.Y., HIRAO, T., MISHIMA, K., OHIRAL, M., HIRAOKAL, Y., TAKAHASHI, M., WATANABE, A. Transcriptome dynamics of rooting zone and aboveground parts of cuttings during adventitious root formation in Cryptomeria japonica D. BMC Plant Biology, 18: 201. 2018.

GEITMANN, A., NIKLAS, K., SPECK, T. Plant biomechanics in the 21st century. Journal of Experimental Botany. 70 (14): 3435-3438. 2019.

GOSH, R., MISRHA, R.C., CHOI, B., KWON, Y.S., BAE, D.W., PARK, S.C., JEONG, M.J., BAE, H. Exposure to Sound Vibrations Lead to Transcriptomic, Proteomic and Hormonal Changes in Arabidopsis. Scientific Reports. 6: 33370. 2016.

HAAS, K.T., WIGTMAN, R., MEYEROWITZ, E.M., PEAUCELLE, A. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science. 367, 1003–1007. 2020.

HUSEN, A., IQBAL, M., SIDDQUI, S.N., SOHRAB, S.S., MASRESHAL, G. Effect of Indole-3-Butyric Acid on Clonal Propagation of Mulberry (Morus alba L.) Stem Cuttings: Rooting and Associated Biochemical Changes. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 87:161–166. 2017.

JANECEK, S., KLIMESOVA, J. Carbohydrate storage in meadow plants and its depletion after disturbance: do roots and stem-derived organs differ in their roles? Oecologia, 175: 51–61.2014.

JOSHI, N., NAUTIYAL, P., PAPNAI, G., SUPYAL, V., SINGH, K. Render a sound dose: effects of implementing acoustic frequencies on plants physiology, biochemistry and genetic makeup. International. Journal of Chemical Studies, 7(5): 2668-2678. 2019.

JUNG, J., KIM, S.K., KIM, J.Y., JEONG, M.J., RYU, C.M. Beyond Chemical Triggers: Evidence for Sound-Evoked Physiological Reactions in Plants. Frontiers in Plant Science, 9:25. 2018.

KIM, Y.J., KANG, Y.E., LEE, S.I., KIM, J.A. MUTHUSAMY, M., JEONG, M. Sound waves affect the total flavonoid contents in Medicago sativa, Brassica oleracea, and Raphanus sativus sprouts. Journal of Science of Food and Agriculture, 100: 431–440. 2020.

LEBLANC-FOURNIER, N., MARTIN, L., LENNE, C., DECOURTEIX, M. To respond or not to respond, the recurring question in plant mechanosensitivity. Frontiers in Plant Science, 5:401. 2014. doi: 10.3389/fpls.2014.00401

MARSOLLIER, A.C., INGRAM, G. Getting physical: invasive growth events during plant development. Current Opinion in Plant Biology, 46:8–17. 2018.

MIRABET, V., DAS, P., BOUDAOUD, A., HAMANT, O. The Role of Mechanical Forces in Plant Morphogenesis. Annu. Rev. Plant Biol., 62:365–85. 2011.

MORENO, A.R., BAZIHIZINA, N., AZZARELLO, E., MASI, E., TRAN, D., BOUTEAU, F., BALUSKA, F., MANCUSO, S. Root phonotropism: early signalling events following sound perception in Arabidopsis roots. Plant Science, 264: 9-15. 2017.

PIZZATO, M., WAGNER JUNIOR, A., LUCKMANN, D., PIROLA, K., CASSOL, D.A., MAZARO, S.M.Effects of IBA concentration, collection time and cutting length on hibiscus cutting propagation. Ceres, 58(4): 487-492. 2011.

SASSI, M., TRAAS, J. When biochemistry meets mechanics: a systems view of growth control in plants. Current Opinion in Plant Biology, 28:137–143. 2015.

SOUZA, L.K.F., DIAS, L.L.L., BARBOSA, M.A., ROCHA, D.I., REIS, E.F.,GOMES, F.R., SOUZA, P.H.M., COSTA, M.M., CARNEIRO, L.C., CRUZ, S.C.S., OLIVEIRA, J.A.A., SALAZAR, A.H., SILVA, D.F.P. Vegetative Propagation of Gabirobeira Associate to Indolbutyric Acid in Different Seasons. Journal of Agricultural Science, 11(7): 187-195. 2019.

STEFFENS, B., RASMUSSEN, A. The Physiology of Adventitious Roots. Plant Physiology, 170: 603–617. 2016.

TSAFOUROS, A., ROUSSOS, P.A. The possible bottleneck effect of polyamines' catabolic enzymes in efficient adventitious rooting of two stone fruit rootstocks. Journal of Plant Physiology, 244: 152999. 2020.

TOYOTA, M., FURUICHI, T., LIDA, H. (2018). Molecular Mechanisms of Mechanosensing and Mechanotransduction. In: Geitmann A, Gril J (Eds). Plant Biomechanics: From Structure to Function at Multiple Scales. Springer Nature. P. 375-397.

WENDLING, I., TRUEMAN, S.J., XAVIER, A. Maturation and related aspects in clonal forestry-Part I: Concepts, regulation and consequences of phase change. New Forests, 1: 1-23. 2014.

WANG, A.H., TAHIRA, M.M., NAWAZB, M.A., MAOA, J., LIA, K., WEIA, Y., MAA, D., LUA, X., ZHAOA, C., ZHANG, D. Spermidine application affects the adventitious root formation and root morphology of apple rootstock by altering the hormonal profile and regulating the gene expression pattern. Scientia Horticulturae, 266: 109310. 2020

Downloads

Publicado

2021-01-26

Como Citar

Dias, L. C., Silva Junior, A. M., & Pires, A. C. A. S. (2021). Adventitious rooting induction of mulberry (Morus sp.) cuttings by sound frequencies and spermidine at different times. Scientific Electronic Archives, 14(2), 30–34. https://doi.org/10.36560/14220211287

Edição

Seção

Agricultural Science