Recent advances in maize production in integrated systems: A review

Autores

  • L. F. Domiciano Universidade Federal de Mato Grosso - Campus Cuiabá
  • B. Carneiro e Pedreira Embrapa Agrossilvipastoril
  • J. G. Abreu Universidade Federal de Mato Grosso, Campus Cuiabá
  • D. H. Pereira Universidade Federal de Mato Grosso, Campus Sinop

DOI:

https://doi.org/10.36560/14520211339

Palavras-chave:

agroforestry, grain yield, forage mass, shade, soil quality

Resumo

Maize is an important crop around the world supporting food security, especially in developing countries. The increasing demand for food and renewable energy resources has been supported studies of competitiveness and complementarity interactions between trees, crops, and animals. Thus, the integrated systems should promote a synergic relationship between the components, resulting in greater production of crops, animals, and forestry. Our objective was to describe recent advances on maize production in integrated systems and how recent research can contribute to intensify and/or diversify the production system. The current literature supports the following appointments. The increase in the soil organic carbon in integrated systems improves the physical (density and aggregate stability), chemical (nutrient retention), and biological (greater diversity and microbial mass) properties. Great grain yield and input reduction are possible with the microbial inoculants' use. The inoculants' action is maximized when associated with fertilizers and/or biochar. The biochar acts as a soil conditioner, increasing the water and nutrients retention in the soil, favoring the maize growth. Maize can be grown in the understory (moderate shade), but productivity will be reduced. Thus, we identified the need for research on shading-tolerant genotypes, intercropped management to minimizes competition, quantification of the stratified light profile by a system component (tree, maize, and grass), and more complex and accurate mathematical models to support decisions in the integrated systems arrangements. Understanding these practices would encourage producers to enhance the use of integrated systems.

Referências

ALMEIDA, R.E.M. DE; FAVARIN, J.L.; OTTO, R.; JUNIOR, C.P.; OLIVEIRA, S.M. DE; TEZOTTO, T.; LAGO, B.C. Effects of nitrogen fertilization on yield components in a corn-palisadegrass intercropping system. Australian Journal of Crop Science, v.11, p.352–359, 2017. DOI: 10.21475/ajcs.17.11.03.pne273.

ANGHINONI, I.; CARVALHO, P.C.D.F.; VALADÃO, S.E.; COSTA, G. DE A. Abordagem sistêmica do solo em Sistemas Integrados de Produção Agrícola e Pecuária no subtrópico brasileiro. In: ARAÚJO, A.P.; AVELAR, B.J.R. (Ed.). Tópicos em Ciência do Solo. Viçosa, MG: UFV, 2013. p.325–380. .

BAIG, M.J.; ANAND, A.; MANDAL, P.K.; BHATT, R.K. Irradiance influences contents of photosynthetic pigments and proteins in tropical grasses and legumes. Photosynthetica, v.43, p.47–53, 2005. DOI: 10.1007/s11099-005-7053-5.

BALBINO, L.C.; KICHEL, A.N.; BUNGENSTAB, D.J.; ALMEIDA, R.G. DE. Sistemas de integração: o que são, suas vantegens e limitações. In: BUNGENSTAB, D.J. (Ed.). Sistemas de integração lavoura-pecuária-floresta. 2.ed. Brasília: Embrapa, 2012. p.256. .

BORGHI, É.; CRUSCIOL, C.A.C.; NASCENTE, A.S.; MATEUS, G.P.; MARTINS, P.O.; COSTA, C. Effects of row spacing and intercrop on maize grain yield and forage production of palisade grass. Crop and Pasture Science, v.63, p.1106, 2012. DOI: 10.1071/CP12344.

BOURSCHEIDT, M.L.B.; PEDREIRA, B.C.; PEREIRA, D.H.; ZANETTE, M.C.; DEVENS, J. Nitrogen input strategies in pastures: mineral fertilizer, bacterial inoculant and consortium with forage peanuts. Scientific Electronic Archives, v.12, p.137, 2019. DOI: 10.36560/1232019784.

BRIEGER, F.G.; BLUMENSCHEIN, A. Botânica e origem do milho. In: Cultura e adubação do milho. São Paulo, SP: Instituto Brasileiro de Potassa, 1966. p.81–107. .

CARVALHO, P.; DOMICIANO, L.F.; MOMBACH, M.A.; NASCIMENTO, H.L.B.; CABRAL, L. DA S.; SOLLENBERGER, L.E.; PEREIRA, D.H.; PEDREIRA, B.C. Forage and animal production on palisadegrass pastures growing in monoculture or as a component of integrated crop–livestock–forestry systems. Grass and Forage Science, v.74, p.650–660, 2019. DOI: 10.1111/gfs.12448.

CARVALHO, P.C. DE F.; MORAES, A. DE; PONTES, L. DA S.; ANGHINONI, I.; SULC, R.M.; BATELLO, C. Definições e terminologias para Sistema Integrado de Produção Agropecuária. Revista Ciência Agronômica, v.45, p.1040–1046, 2014.

COSTA, M.P.; SCHOENEBOOM, J.C.; OLIVEIRA, S.A.; VIÑAS, R.S.; MEDEIROS, G.A. DE. A socio-eco-efficiency analysis of integrated and non-integrated crop-livestock-forestry systems in the Brazilian Cerrado based on LCA. Journal of Cleaner Production, v.171, p.1460–1471, 2018. DOI: 10.1016/j.jclepro.2017.10.063.

CRUZ, J.C.; FILHO, I.A.P.; ALVARENGA, R.C.; NETO, M.M.G.; VIANA, J.H.M.; OLIVEIRA, M.F. DE; MATRANGOLO, W.J.R.; FILHO, M.R. DE A. Cultivo do Milho. In: Sistemas de Produção. 6.ed. [s.l.] Embrapa Milho e Sorgo, 2010. p.1–10. .

DOLLINGER, J.; JOSE, S. Agroforestry for soil health. Agroforestry Systems, v.92, p.213–219, 2018. DOI: 10.1007/s10457-018-0223-9.

DOMICIANO, L.F.; MOMBACH, M.A.; CARVALHO, P.; SILVA, N.M.F. DA; PEREIRA, D.H.; CABRAL, L.S.; LOPES, L.B.; PEDREIRA, B.C. Performance and behaviour of Nellore steers on integrated systems. Animal Production Science, v.58, p.920–929, 2018. DOI: 10.1071/AN16351.

DOMICIANO, L.F.; PEDREIRA, B.C.; SILVA, N.M.F. DA; MOMBACH, M.A.; CHIZZOTTI, F.H.M.; BATISTA, E.D.; CARVALHO, P.; CABRAL, L.S.; PEREIRA, D.H.; NASCIMENTO, H.L.B. DO. Agroforestry systems: an alternative to intensify forage-based livestock in the Brazilian Amazon. Agroforestry Systems, p.1–11, 2020. DOI: 10.1007/s10457-020-00499-1.

ERS-USDA. Feed grains Sector at a Glance Economic Research Service of United States Department of Agriculture. Washington, DC: [s.n.]. Online.

FALOYE, O.T.; ALATISE, M.O.; AJAYI, A.E.; EWULO, B.S. Effects of biochar and inorganic fertiliser applications on growth, yield and water use efficiency of maize under deficit irrigation. Agricultural Water Management, v.217, p.165–178, 2019. DOI: 10.1016/j.agwat.2019.02.044.

FAS-USDA. World agricultural production Foreign Agricultural Service/United States Department of Agriculture. Washington, DC: FAS/USDA, 2019. 34p.

FISCHER, J.; BÖHM, H.; HEΒ, J. Maize-bean intercropping yields in Northern Germany are comparable to those of pure silage maize. European Journal of Agronomy, v.112, p.125947, 2020. DOI: 10.1016/j.eja.2019.125947.

FRANKLIN, K.A. Shade avoidance. New Phytologist, v.179, p.930–944, 2008. DOI: 10.1111/j.1469-8137.2008.02507.x.

FRANKLIN, K.A.; QUAIL, P.H. Phytochrome functions in Arabidopsis development. Journal of Experimental Botany, v.61, p.11–24, 2010. DOI: 10.1093/jxb/erp304.

GALINDO, F.S.; TEIXEIRA FILHO, M.C.M.; BUZETTI, S.; PAGLIARI, P.H.; SANTINI, J.M.K.; ALVES, C.J.; MEGDA, M.M.; NOGUEIRA, T.A.R.; ANDREOTTI, M.; ARF, O. Maize Yield Response to Nitrogen Rates and Sources Associated with Azospirillum brasilense. Agronomy Journal, v.111, p.1985, 2019. DOI: 10.2134/agronj2018.07.0481.

GOMES, F.J.; PEDREIRA, B.C.; SANTOS, P.M.; BOSI, C.; LULU, J.; PEDREIRA, C.G.S. Microclimate effects on canopy characteristics of shaded palisadegrass pastures in a silvopastoral system in the Amazon biome of central Brazil. European Journal of Agronomy, v.115, p.126029, 2020a. DOI: 10.1016/j.eja.2020.126029.

GOMES, F.J.; PEDREIRA, B.C.; SANTOS, P.M.; BOSI, C.; PEDREIRA, C.G.S. Shading effects on canopy and tillering characteristics of continuously stocked palisadegrass in a silvopastoral system in the Amazon biome. Grass and Forage Science, v.75, p.279–290, 2020b. DOI: 10.1111/gfs.12478.

GOMES, F.J.; PEDREIRA, C.G.S.; BOSI, C.; CAVALLI, J.; HOLSCHUCH, S.G.; MOURÃO, G.B.; PEREIRA, D.H.; PEDREIRA, B.C. Shading Effects on Marandu Palisadegrass in a Silvopastoral System: Plant Morphological and Physiological Responses. Agronomy Journal, v.111, p.1–9, 2019. DOI: 10.2134/agronj2019.01.0052.

GURURANI, M.A.; GANESAN, M.; SONG, P.-S. Photo-biotechnology as a tool to improve agronomic traits in crops. Biotechnology Advances, v.33, p.53–63, 2015. DOI: 10.1016/j.biotechadv.2014.12.005.

HARTMANN, A.; FISCHER, D.; KINZEL, L.; CHOWDHURY, S.P.; HOFMANN, A.; BALDANI, J.I.; ROTHBALLER, M. Assessment of the structural and functional diversities of plant microbiota: Achievements and challenges – A review. Journal of Advanced Research, v.19, p.3–13, 2019. DOI: 10.1016/j.jare.2019.04.007.

HERFORTH, A.; BAI, Y.; VENKAT, A.; MAHRT, K.; EBEL, A.; MASTERS, W.A. Cost and affordability of healthy diets across and within countries: Background paper for The State of Food Security and Nutrition in the World 2020. FAO Agricultural Development Economics Technical Study No. 9. Rome: Food & Agriculture Organizations of the United Nations, 2020. v.9

HUNGRIA, M. Inoculação com Azospirillum brasilense: inovação em rendimento a baixo custo. Londrina, PR: Embrapa Soja, 2011. 36p.

ILTIS, H.H. Origin of Polystichy in Maize. In: STALLER, J.; TYKOT, R.; BENZ, B. (Ed.). Histories of maize: multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Walnut Creek, CA: Left Coast Press, 2009. p.21–53. .

JAREMTCHUK, A.R.; JAREMTCHUK, C.C.; BAGLIOLI, B.; MEDRADO, M.T.; KOZLOWSKI, L.A.; COSTA, C.; MADEIRA, H.M.F. Características agronômicas e bromatológicas de vinte genótipos de milho (Zea mays L.) para silagem na região leste paranaense. Acta Scientiarum. Animal Sciences, v.27, 2005. DOI: 10.4025/actascianimsci.v27i2.1220.

JOSE, S.; GILLESPIE, A.R.; PALLARDY, S.G. Interspecific interactions in temperate agroforestry. Agroforestry Systems, v.61–62, p.237–255, 2004. DOI: 10.1023/B:AGFO.0000029002.85273.9b.

KAMAU, S.; KARANJA, N.K.; AYUKE, F.O.; LEHMANN, J. Short-term influence of biochar and fertilizer-biochar blends on soil nutrients, fauna and maize growth. Biology and Fertility of Soils, v.55, p.661–673, 2019. DOI: 10.1007/s00374-019-01381-8.

KARVATTE JR, N.; KLOSOWSKI, E.S.; ALMEIDA, R.G. DE; MESQUITA, E.E.; OLIVEIRA, C.C. DE; ALVES, F.V. Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest. International Journal of Biometeorology, v.60, p.1933–1941, 2016. DOI: 10.1007/s00484-016-1180-5.

KÄTTERER, T.; ROOBROECK, D.; ANDRÉN, O.; KIMUTAI, G.; KARLTUN, E.; KIRCHMANN, H.; NYBERG, G.; VANLAUWE, B.; RÖING DE NOWINA, K. Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. Field Crops Research, v.235, p.18–26, 2019. DOI: 10.1016/j.fcr.2019.02.015.

LADE, S.B.; ROMÁN, C.; CUETO-GINZO, A.I.; SERRANO, L.; SIN, E.; ACHÓN, M.A.; MEDINA, V. Host-specific proteomic and growth analysis of maize and tomato seedlings inoculated with Azospirillum brasilense Sp7. Plant Physiology and Biochemistry, v.129, p.381–393, 2018. DOI: 10.1016/j.plaphy.2018.06.024.

LEAKEY, R.R.B.; PAGE, T. The ‘ideotype concept’ and its application to the selection of cultivars of trees providing agroforestry tree products. Forests, Trees and Livelihoods, v.16, p.5–16, 2006. DOI: 10.1080/14728028.2006.9752542.

LEHMANN, J.; GAUNT, J.; RONDON, M. Bio-char Sequestration in Terrestrial Ecosystems – A Review. Mitigation and Adaptation Strategies for Global Change, v.11, p.403–427, 2006. DOI: 10.1007/s11027-005-9006-5.

LEITE, R.D.C.; SANTOS, J.G.D. DOS; SILVA, E.L.; ALVES, C.R.C.R.; HUNGRIA, M.; LEITE, R.D.C.; SANTOS, A.C. DOS. Productivity increase, reduction of nitrogen fertiliser use and drought-stress mitigation by inoculation of Marandu grass (Urochloa brizantha) with Azospirillum brasilense. Crop and Pasture Science, v.70, p.61, 2019. DOI: 10.1071/CP18105.

LIMA, M.A.; PACIULLO, D.S.C.; MORENZ, M.J.F.; GOMIDE, C.A.M.; RODRIGUES, R.A.R.; CHIZZOTTI, F.H.M. Productivity and nutritive value of Brachiaria decumbens and performance of dairy heifers in a long-term silvopastoral system. Grass and Forage Science, v.74, p.160–170, 2019. DOI: 10.1111/gfs.12395.

LÓPEZ-CARMONA, D.A.; ALARCÓN, A.; MARTÍNEZ-ROMERO, E.; PEÑA-CABRIALES, J.J.; LARSEN, J. Maize plant growth response to whole rhizosphere microbial communities in different mineral N and P fertilization scenarios. Rhizosphere, v.9, p.38–46, 2019. DOI: 10.1016/j.rhisph.2018.11.004.

LOTHA, G.; YOUNG, G.; SAMPAOLO, M.; PETRUZZELLO, M.; CHAUHAN, Y. Corn Plant. Encyclopedia Britannica, Chicago, 2019. Disponível em: <https://www.britannica.com/plant/corn-plant>. Acesso em: 8 out. 2019

MACEDO, R.L.G.; VENTURIN, R.P.; VIANA, M.C.M.; VENTURIN, N.; CARVALHO, F. DE; NIERI, E.M. O componente arbóreo e suas interações no sistema de integração lavoura-pecuaria-floresta. In: BUNGENSTAB, D.J.; ALMEIDA, R.G. DE; LAURA, V.A.; BALBINO, L.C.; FERREIRA, A.D. (Ed.). ILPF: inovação com integração de lavoura, pecuária e floresta. Brasília, DF: Embrapa, 2019. p.473–492.

MAGALHÃES, C.A.S.; ZOLIN, C.A.; LULU, J.; LOPES, L.B.; FURTINI, I. V.; VENDRUSCULO, L.G.; ZAIATZ, A.P.S.R.; PEDREIRA, B.C.; PEZZOPANE, J.R.M. Improvement of thermal comfort indices in agroforestry systems in the southern Brazilian Amazon. Journal of Thermal Biology, v.91, p.102636, 2020. DOI: 10.1016/j.jtherbio.2020.102636.

MANCHANDA, N.; SNODGRASS, S.J.; ROSS-IBARRA, J.; HUFFORD, M.B. Evolution and Adaptation in the Maize Genome. In: BENNETZEN, J.; FLINT-GARCIA, S.; HIRSCH, C.; TUBEROSA, R. (Ed.). The Maize Genome. Compendium of Plant Genomes. Cham: Springer, 2018. p.319–332. DOI: 10.1007/978-3-319-97427-9_19.

MAPA. Sumário Executivo - Milho em grãos. Disponível em: <http://www.agricultura.gov.br/assuntos/politica-agricola/todas-publicacoes-de-politica-agricola/sumarios-executivos-de-produtos-agricolas/milho-pdf>. Acesso em: 10 out. 2019.

MARAG, P.S.; SUMAN, A. Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.). Microbiological Research, v.214, p.101–113, 2018. DOI: 10.1016/j.micres.2018.05.016.

MATHUR, S.; JAIN, L.; JAJOO, A. Photosynthetic efficiency in sun and shade plants. Photosynthetica, v.56, p.354–365, 2018. DOI: 10.1007/s11099-018-0767-y.

MELOTTO, A.M.; LAURA, V.A.; BUNGENSTAB, D.J.; FERREIRA, A.D. Espécies florestais em sistemas de produção em integração. In: BUNGENSTAB, D.J.; ALMEIDA, R.G. DE; LAURA, V.A.; BALBINO, L.C.; FERREIRA, A.D. (Ed.). ILPF: inovação com integração de lavoura, pecuária e floresta. Brasília, DF: Embrapa, 2019. p.835. .

MOREIRA, E.D.S.; GONTIJO NETO, M.M.; LANA, Â.M.Q.; BORGHI, E.; SANTOS, C.A. DOS; ALVARENGA, R.C.; VIANA, M.C.M. Production efficiency and agronomic attributes of corn in an integrated crop-livestock-forestry system. Pesquisa Agropecuária Brasileira, v.53, p.419–426, 2018. DOI: 10.1590/s0100-204x2018000400003.

MUGUNGA, C.P.; GILLER, K.E.; MOHREN, G.M.J. Tree-crop interactions in maize-eucalypt woodlot systems in southern Rwanda. European Journal of Agronomy, v.86, p.78–86, 2017. DOI: 10.1016/j.eja.2017.03.004.

NARDINI, C.; SGARBOSSA, J.; SCHWERZ, F.; ELLI, E.F.; LUIZ, S.; MEDEIROS, P.; CARON, B.O. Growth and solar radiation use efficiency of corn cultivated in agroforestry systems. Emirates Journal of Food and Agriculture, v.31, p.535–543, 2019. DOI: 10.9755/ejfa.2019.v31.i7.1977.

NASCIMENTO, H.L.B. DO; PEDREIRA, B.C.; SOLLENBERGER, L.E.; PEREIRA, D.H.; MAGALHÃES, C.A. DE S.; CHIZZOTTI, F.H.M. Physiological characteristics and forage accumulation of grazed Marandu palisade grass (Brachiaria brizantha) growing in monoculture and in silvopasture with Eucalyptus urograndis. Crop and Pasture Science, v.70, p.384–394, 2019. DOI: 10.1071/CP18403.

OLIVEIRA, S.M. DE; ALMEIDA, R.E.M. DE; PIEROZAN JUNIOR, C.; REIS, A.F. DE B.; SOUZA, L.F.N.; FAVARIN, J.L. Contribution of corn intercropped with Brachiaria species to nutrient cycling. Pesquisa Agropecuária Tropical, v.49, p.1–9, 2019. DOI: 10.1590/1983-40632019v4955018.

OREFICE, J.; SMITH, R.G.; CARROLL, J.; ASBJORNSEN, H.; HOWARD, T. Forage productivity and profitability in newly-established open pasture, silvopasture, and thinned forest production systems. Agroforestry Systems, v.93, p.51–65, 2019. DOI: 10.1007/s10457-016-0052-7.

PANG, K.; SAMBEEK, J.W. VAN; NAVARRETE-TINDALL, N.E.; LIN, C.-H.; JOSE, S.; GARRETT, H.E. Responses of legumes and grasses to non-, moderate, and dense shade in Missouri, USA. II. Forage quality and its species-level plasticity. Agroforestry Systems, v.93, p.25–38, 2019. DOI: 10.1007/s10457-017-0068-7.

PARAMESH, V.; PARAJULI, R.; CHAKURKAR, E.B.; SREEKANTH, G.B.; KUMAR, H.B.C.; GOKULDAS, P.P.; MAHAJAN, G.R.; MANOHARA, K.K.; VISWANATHA, R.K.; RAVISANKAR, N. Sustainability, energy budgeting, and life cycle assessment of crop-dairy-fish-poultry mixed farming system for coastal lowlands under humid tropic condition of India. Energy, v.188, p.116101, 2019. DOI: 10.1016/j.energy.2019.116101.

PARDON, P.; REUBENS, B.; MERTENS, J.; VERHEYEN, K.; FRENNE, P. DE; SMET, G. DE; WAES, C. VAN; REHEUL, D. Effects of temperate agroforestry on yield and quality of different arable intercrops. Agricultural Systems, v.166, p.135–151, 2018. DOI: 10.1016/j.agsy.2018.08.008.

PARIZ, C.M.; COSTA, C.; CRUSCIOL, C.A.C.; MEIRELLES, P.R.L.; CASTILHOS, A.M.; ANDREOTTI, M.; COSTA, N.R.; MARTELLO, J.M.; SOUZA, D.M.; PROTES, V.M.; LONGHINI, V.Z.; FRANZLUEBBERS, A.J. Production, nutrient cycling and soil compaction to grazing of grass companion cropping with corn and soybean. Nutrient Cycling in Agroecosystems, v.108, p.35–54, 2017. DOI: 10.1007/s10705-016-9821-y.

PARIZ, C.M.; COSTA, C.; CRUSCIOL, C.A.C.; MEIRELLES, P.R.L.; CASTILHOS, A.M.; ANDREOTTI, M.; COSTA, N.R.; MARTELLO, J.M.; SOUZA, D.M.; SARTO, J.R.W.; FRANZLUEBBERS, A.J. Production and Soil Responses to Intercropping of Forage Grasses with Corn and Soybean Silage. Agronomy Journal, v.108, p.2541–2553, 2016. DOI: 10.2134/agronj2016.02.0082.

PAZ‐FERREIRO, J.; FU, S. Biological Indices for Soil Quality Evaluation: Perspectives and Limitations. Land Degradation & Development, v.27, p.14–25, 2016. DOI: 10.1002/ldr.2262.

PEDREIRA, B.C.; BARBOSA, P.L.; PEREIRA, L.E.T.; MOMBACH, M.A.; DOMICIANO, L.F.; PEREIRA, D.H.; FERREIRA, A. Tiller density and tillering on Brachiaria brizantha cv. Marandu pastures inoculated with Azospirillum brasilense. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.69, p.1039–1046, 2017a. DOI: 10.1590/1678-4162-9034.

PEDREIRA, B.C.; DOMICIANO, L.F.; RODRIGUES, R.R. DE A.; MORAES, S.R.G.; MAGALHÃES, C.A. DE S.; MATOS, E. DA S.; ZOLIN, C.A. Integração lavoura-pecuária: Novas tendências. In: MEDEIROS, F.H.V. [ET AL. (Ed.). Novos sistemas de produção. Lavras, MG: UFLA, 2017b. p.128–160. .

PEDREIRA, B.C.; DOMICIANO, L.F.; VILELA, L.; SALTON, J.C.; MARCHIÓ, W.; WRUCK, F.J.; PEREIRA, D.H.; RODRIGUES, R. DE A.R.; MATOS, E. DA S.; MAGALHAES, C.A. DE S.; ZOLIN, C.A. O estado da arte e estudos de caso em sistemas integrados de produção agropecuária no Centro-Oeste do Brasil. In: SOUZA, E.D. DE; SILVA, F.D. DA; ASSMANN, T.S.; CARNEIRO, M.A.C.; CARVALHO, P.C. DE F.; PAULINO, H.B. (Ed.). Sistemas Integrados de Produção Agropecuária no Brasil. Tubarão, SC: Copiart, 2018. p.277–300. .

PEDREIRA, B.C.; NASCIMENTO, H.L.B.; GOMES, F.J.; CHIZZOTTI, F.H.M.; PEDREIRA, C.G.S.; PEREIRA, D.H. Silvipastoril: um sistema de produção eficiente e responsável. In: BENEDETTI, E. (Ed.). Leguminosas Forrageiras. Uberlândia, MG: EDUFU, 2019. p.141–162. .

PEZZOPANE, J.R.M.; BERNARDI, A.C. DE C.; AZENHA, M.V.; OLIVEIRA, P.P.A.; BOSI, C.; PEDROSO, A. DE F.; ESTEVES, S.N. Production and nutritive value of pastures in integrated livestock production systems: shading and management effects. Scientia Agricola, v.77, p.20180150, 2020. DOI: 10.1590/1678-992x-2018-0150.

PEZZOPANE, J.R.M.; BERNARDI, A.C.C.; BOSI, C.; OLIVEIRA, P.P.A.; MARCONATO, M.H.; FARIA PEDROSO, A. DE; ESTEVES, S.N. Forage productivity and nutritive value during pasture renovation in integrated systems. Agroforestry Systems, v.93, p.39–49, 2019. DOI: 10.1007/s10457-017-0149-7.

PONTES, L. DA S.; TULLIO, G.F.; MARTINS, A. DE S.; MOLETTA, J.L.; PORFÍRIO-DA-SILVA, V. Corn yield for silage and grains in different integrated crop-livestock systems. Revista Ciência Agronômica, v.49, p.315–323, 2018. DOI: 10.5935/1806-6690.20180036.

RAFIQUE, M.; ORTAS, I.; RIZWAN, M.; CHAUDHARY, H.J.; GURMANI, A.R.; HUSSAIN MUNIS, M.F. Residual effects of biochar and phosphorus on growth and nutrient accumulation by maize (Zea mays L.) amended with microbes in texturally different soils. Chemosphere, v.238, p.124710, 2020. DOI: 10.1016/j.chemosphere.2019.124710.

RAHMAN, N.A.; LARBI, A.; OPOKU, A.; TETTEH, F.M.; HOESCHLE-ZELEDON, I. Crop-Livestock Interaction Effect on Soil Quality and Maize Yield in Northern Ghana. Agronomy Journal, v.111, p.907, 2019. DOI: 10.2134/agronj2018.08.0523.

REYNOLDS, P.E.; SIMPSON, J.A.; THEVATHASAN, N. V.; GORDON, A.M. Effects of tree competition on corn and soybean photosynthesis, growth, and yield in a temperate tree-based agroforestry intercropping system in southern Ontario, Canada. Ecological Engineering, v.29, p.362–371, 2007. DOI: 10.1016/j.ecoleng.2006.09.024.

RÖÖS, E.; BAJŽELJ, B.; SMITH, P.; PATEL, M.; LITTLE, D.; GARNETT, T. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Global Environmental Change, v.47, p.1–12, 2017. DOI: 10.1016/j.gloenvcha.2017.09.001.

SALVO, L.P. DI; CELLUCCI, G.C.; CARLINO, M.E.; GARCÍA DE SALAMONE, I.E. Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize (Zea mays L.) grain yield and modified rhizosphere microbial communities. Applied Soil Ecology, v.126, p.113–120, 2018. DOI: 10.1016/j.apsoil.2018.02.010.

SANS, P.; COMBRIS, P. World meat consumption patterns: An overview of the last fifty years (1961–2011). Meat Science, v.109, p.106–111, 2015. DOI: 10.1016/J.MEATSCI.2015.05.012.

SANTOS, M.V.; SILVA, D.V.; FONSECA, D.M. DA; REIS, M.R. DOS; FERREIRA, L.R.; OLIVEIRA NETO, S.N. DE; OLIVEIRA, F.L.R. DE. Componentes produtivos do milho sob diferentes manejos de plantas daninhas e arranjos de plantio em sistema agrossilvipastoril. Ciência Rural, v.45, p.1545–1550, 2015. DOI: 10.1590/0103-8478cr20141224.

SARFRAZ, R.; HUSSAIN, A.; SABIR, A.; FEKIH, I. BEN; DITTA, A.; XING, S. Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestration - a review. Environmental Monitoring and Assessment, v.191, p.251, 2019. DOI: 10.1007/s10661-019-7400-9.

SARFRAZ, R.; SHAKOOR, A.; ABDULLAH, M.; AROOJ, A.; HUSSAIN, A.; XING, S. Impact of integrated application of biochar and nitrogen fertilizers on maize growth and nitrogen recovery in alkaline calcareous soil. Soil Science and Plant Nutrition, v.63, p.488–498, 2017. DOI: 10.1080/00380768.2017.1376225.

SARTO, M.V.M.; BORGES, W.L.B.; SARTO, J.R.W.; PIRES, C.A.B.; RICE, C.W.; ROSOLEM, C.A. Soil microbial community and activity in a tropical integrated crop-livestock system. Applied Soil Ecology, v.145, p.1–11, 2020. DOI: 10.1016/j.apsoil.2019.08.012.

SCHAEFER, P.E.; MARTIN, T.N.; PIZZANI, R.; SCHAEFER, E.L. Inoculation with Azospirillum brasilense on corn yield and yield components in an integrated crop-livestock system. Acta Scientiarum. Agronomy, v.41, p.39481, 2018. DOI: 10.4025/actasciagron.v41i1.39481.

SILVA, F.S. DA; DOMICIANO, L.F.; GOMES, F.J.; SOLLENBERGER, L.E.; PEDREIRA, C.G.S.; PEREIRA, D.H.; PEDREIRA, B.C. Herbage accumulation, nutritive value and beef cattle production on marandu palisadegrass pastures in integrated systems. Agroforestry Systems, v.3, p.1–12, 2020. DOI: 10.1007/s10457-020-00508-3.

SOIL SURVEY STAFF. Keys to Soil Taxonomy. 12.ed. Washington, DC.: USDA - Natural Resources Conservation Service, 2014. v.12 410p.

SUBRAMANIAM, Y.; MASRON, T.A.; AZMAN, N.H.N. Biofuels, environmental sustainability, and food security: A review of 51 countries. Energy Research & Social Science, v.68, p.101549, 2020. DOI: https://doi.org/10.1016/j.erss.2020.101549.

TAIZ, L.; ZEIGER, E.; MØLLER, I.M.; MURPHY, A. Fisiologia e desenvolvimento vegetal. 6th.ed. Porto Alegre, RS: Artmed, 2017. 888p.

VIAUD, V.; SANTILLÀN-CARVANTES, P.; AKKAL-CORFINI, N.; GUILLOU, C. LE; PRÉVOST-BOURÉ, N.C.; RANJARD, L.; MENASSERI-AUBRY, S. Landscape-scale analysis of cropping system effects on soil quality in a context of crop-livestock farming. Agriculture, Ecosystems & Environment, v.265, p.166–177, 2018. DOI: 10.1016/j.agee.2018.06.018.

VIDOTTI, M.S.; MATIAS, F.I.; ALVES, F.C.; PÉREZ-RODRÍGUEZ, P.; BELTRAN, G.A.; BURGUEÑO, J.; CROSSA, J.; FRITSCHE-NETO, R. Maize responsiveness to Azospirillum brasilense: Insights into genetic control, heterosis and genomic prediction. PLOS ONE, v.14, p.e0217571, 2019. DOI: 10.1371/journal.pone.0217571.

WU, G.; ZHAO, Y.; SHEN, R.; WANG, B.; XIE, Y.; MA, X.; ZHENG, Z.; WANG, H. Characterization of Maize Phytochrome-Interacting Factors in Light Signaling and Photomorphogenesis. Plant Physiology, v.181, p.789–803, 2019. DOI: 10.1104/pp.19.00239.

YOUSEIF, S.H. Genetic diversity of plant growth promoting rhizobacteria and their effects on the growth of maize plants under greenhouse conditions. Annals of Agricultural Sciences, v.63, p.25–35, 2018. DOI: 10.1016/j.aoas.2018.04.002.

ZEFFA, D.M.; PERINI, L.J.; SILVA, M.B.; SOUSA, N.V. DE; SCAPIM, C.A.; OLIVEIRA, A.L.M. DE; AMARAL JÚNIOR, A.T. DO; AZEREDO GONÇALVES, L.S. Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLOS ONE, v.14, p.e0215332, 2019. DOI: 10.1371/journal.pone.0215332.

Publicado

2021-04-30

Como Citar

Domiciano, L. F. ., Carneiro e Pedreira, B., J. G., J. G., & Pereira, D. H. (2021). Recent advances in maize production in integrated systems: A review. Scientific Electronic Archives, 14(5), 1–11. https://doi.org/10.36560/14520211339

Edição

Seção

Agricultural Science