Assessing Helicobacter pylori motility and biofilm formation in subinhibitory concentrations of antimicrobials


  • Caroline Aparecida Maggioni Fauro Universidade Federal de Mato Grosso – Campus Universitário de Sinop
  • Luanny Cristiny Moresco Tessari Universidade Federal de Mato Grosso – Campus Universitário de Sinop
  • Nohati Rhanda Freitas Dos Santos Universidade Federal de Mato Grosso – Campus Universitário de Sinop
  • Neocimar Saraiva Correia Universidade Federal de Mato Grosso – Campus Universitário de Sinop
  • Cibele Bonacorsi Universidade Federal de Mato Grosso – Campus Universitário de Sinop
  • Alexandre Melo Bailão Universidade Federal de Goiás
  • Lilian Cristiane Baeza Universidade Estadual do Oeste do Paraná
  • Newton Valério Verbisck Embrapa Gado de Corte
  • Fabiana Cristina Donofrio Universidade Federal de Mato Grosso – Campus Universitário de Sinop



H. pylori, biofilm, motility, subinhibitory concentrations of antimicrobials


Numerous studies have shown that subinhibitory concentrations of antimicrobials can alter bacterial virulence factors. This study evaluates motility and biofilm formation by H. pylori 43504 grown in subinhibitory concentrations of amoxicillin (AMX), clarithromycin (CLA), or tetracycline (TET). For the swimming and swarming motility assays, H. pylori 43504 suspensions were prepared with the strain alone or with the strain in AMX, CLA, or TET at ½ MIC. Next, the media were incubated at 37 ºC, under microaerophilia. To assess biofilm formation in the presence of one of the antimicrobials at subinhibitory antimicrobial concentrations, bacterial suspensions (109 CFU/mL) were prepared in 2.5% FBS containing AMX, CLA, or TET at ½ MIC.  After incubation for 10 days, H. pylori 43504 grown in medium containing AMX, CLA, or TET at ½ MIC presented greater swimming motility and lower swarming motility than the non-treated strain. H. pylori 43504 grown in medium containing AMX, CLA, or TET at ½ MIC showed stronger biofilm production than the non-treated strain. Our results showed that AMX, CLA, or TET at subinhibitory concentrations favors H. pylori 43504 swimming motility and biofilm formation after incubation for 3 days. This may have clinical consequences and make the microorganism difficult to eradicate.


ABDOLLAHI, H., TADJROBEHKAR, O. The role of different sugars, amino acids and few other substances in chemotaxis directed motility of Helicobacter Pylori. Ira. J. Basic Med. Sci. V. 15, p. 787-794, 2012.

ABDOUCHAKOUR, F., AUJOULAT. F., LICZNAR-FAJARDO. P. et al. Intraclonal variations of resistance and phenotype in Pseudomonas aeruginosa epidemic high-risk clone ST308: A key to success within a hospital?. Int. J. Med. Microbiol. V. 308, p. 279-289, 2018.

ATTARAN, B., FALSINI, T. Identification of Factors Associated with Biofilm Formation Ability in the Clinical Isolates of Helicobacter pylori. Iran. J. Biotechnol. V. 15, p. 58-66, 2017.

AZEREDO, J., AZEVEDO, N.F., BRIANDET, R. et al. Critical review on biofilm methods. Crit. Ver. Microbiol. V. 43, p. 313-351, 2016.

BAHARI, S., ZEIGHAMI, H., MIRSHAHABI, H. et al. Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. J. Glob. Antimicrob. Resist. V. 10, p. 21-28, 2017.

BAJ, J., FORMA, A., SITARZ, M. et al. Helicobacter pylori Virulence Factors—Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cell. V. 10, p. 27, 2021.

BENAÏSSA, M., BABIN, P., QUELLARD, N. et al. Changes in Helicobacter pylori ultrastructure and antigens during conversion from the bacillary to the coccoid form. Infect. Immunit. V. 64, p. 2331–2335, 1996.

BERNARDI, S., ANDERSON, A., MACCHIARELLI, G. et al. Subinhibitory antibiotic concentrations enhance biofilm formation of clinical Enterococcus faecalis isolates. Antib. V. 10, p. 874, 2021.

BERNARDO, M., CAPPON, A., GIUDICE, G.D. et al. The multiple cellular activities of the VacA cytotoxin of Helicobacter pylori. Int. J. Microbiol. V. 293, p. 589-597, 2004.

BESSA, L.J., GRANDE, R., IORIO, D.D. Helicobacter pylori free-living and biofilm modes of growth: behavior in response to different culture media. A.P.M.I.S., V. 121, p. 549-560, 2013.

BrCAST/EUCAST. Brazilian Committee on Antimicrobial Susceptibility Testing (BrCAST). Tabelas de pontos de corte para interpretação de CIMs e diâmetros de halos – Version in portuguese of the EUSCAST Breakpoint tables for interpretation of MICs and zone diameters, 2021.

CAMMAROTA, G., SANGUINETTI, M., GALLO, A. Review article: biofilm formation by Helicobacter pylori as a target for eradication of resistant infection. Aliment. Pharmacol. Ther. V. 36, p. 222-230, 2012.

CELLINI, L. Helicobacter pylori: A chameleon-like approach to life. W. J. Gastroenterol. V. 20, p. 5575-5582, 2014.

CHADHA, J. In vitro effects of sub-inhibitory concentrations of amoxicillin on physiological responses and virulence determinants in a commensal strain of Escherichia coli. J. Appl. Microbiol. V. 131, p. 682-694, 2021.

CHMIELA, M., KUPCINSKAS, J. Review: Pathogenesis of Helicobacter pylori infection. Helicob. V. 24, p. 1-5, 2019.

CICCAGLIONE, A.F., GIULIO, M.D., LODOVICO, S.D. et al. Bovine lactoferrin enhances the efficacy of levofloxacin-based triple therapy as first-line treatment of Helicobacter pylori infection: an in vitro and in vivo study. J. Antimicrob. Chemother. V. 74, p. 1069-1077, 2019.

CLSI. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. 3. ed. Pennsylvania: Clinical and Laboratory Standards Institute, 2015.

COELHO, L.G.V., MARINHO, J.R., GENTA. R. et al. IVth Brazilian Consensus Conference on Helicobacter pylori infection. Arq. Gastroenterol. V. 55, p. 97-121, 2018.

COLE, S.P., HARWOOD, J., LEE, R. et al. Characterization of Monospecies Biofilm Formation by Helicobacter pylori. J. Bacteriol. V. 186, p. 3124-3132, 2004.

DONOFRIO, F.C., MIRANDA, E.T., MAIA, D.C.G. et al. Subinhibitory concentrations of amoxicillin on Helicobacter pylori increase apoptosis in RAW 264.7 cells. J. Chem. Pharm. Rev. V. 7, p. 178-181, 2015.

DONOFRIO, F.C., RADDI, M.S.G., CARLOS, I.Z. et al. Impact of sub-inhibitory concentrations of amoxicillin on Helicobacter pylori virulence factors. W. J. Pharm. Res. V. 3, p. 30-46, 2014.

FERNANDEZ, L., JENSSEN, H., BAINS, M. et al. The Two-Component System CprRS senses cationic peptides and triggers adaptive resistance in Pseudomonas aeruginosa independently of ParRS. Antimicrob. Ag. Chemother. V. 56, p. 6212–6222, 2012.

GOMEZ-RAMIREZ, U., VALENCIA-MAYORAL, P., MENDOZA-ELIZALDE, S. et al. Role of Helicobacter pylori and Other environmental factors in the development of gastric dysbiosis. Pathog. V. 10, p. 1203, 2021.

GU, H. Role of Flagella in the Pathogenesis of Helicobacter pylori. Curr. Microbiol. Rev. V. 74, p. 863-869, 2017.

HARSHEY, R.M. Bacterial motility on a surface: Many ways to a common goal. Annu. Rev. Mocrobiol. V. 57, p. 249-273, 2003.

HATHROUBI, S., ZEREBINSKI, J., OTTEMANN, K.M. Helicobacter pylori biofilm involves a multigene stress-biased response, including a structural role for flagela. MBio. V. 9, p. 1-19, 2018.

HESS, D.J., HENRY-STANLEY, M.J., WELLS, C.L. The natural surfactant glycerol monolaurate significantly reduces development of Staphylococcus aureus and Enterococcus faecalis biofilms. Surg. Infect. V. 16, p. 538–542, 2015.

HORII, T., MORITA, M., MARUMATSU, H. et al. Effects of mupirocin at subinhibitory concentrations on flagella formation in Pseudomonas aeruginosa and Proteus mirabilis. J. Antimicrob. Chemother. V. 51, p. 1175–1179, 2003.

HSU, P.I., TSAY, F.W., GRAHAM, D.Y. Equivalent efficacies of reverse hybrid and bismuth quadruple therapies in eradication of Helicobacter pylori infection in a randomized controlled trial. C.G.H. V. 16, p. 1427-1433, 2018.

KAWAMURA-SATO, K., LINUMA, Y., HASEGAWA, T. et al. Effect of subinhibitory concentrations of macrolides on expression of flagellin in Pseudomonas aeruginosa and Proteus mirabilis. Antimicrob. Ag. Chemother. V. 44, p. 2869–2872, 2000.

LAUGA, E., POWERS, T.R. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. V. 72, p. 36, 2009.

MERRELL, D.S., GOODRICH, M.L., OTTO, G. pH-Regulated gene expression of the gastric pathogen Helicobacter pylori. Infect. Immunit. V. 71, p. 3529–3539, 2003.

MOLINARI, G., PAGLIA, P., SCHITO, G.C. Inhibition of motility of Pseudomonas aeruginosa and Proteus mirabilis by subinhibitory concentrations of azithromycin. Eur. J. Clin. Microbiol. Infect. Dis. V. 11, p. 469-471, 1992.

MOREIRA, C.G., WEINSHENKER, D., SPERANDIO, V. QseC mediates Salmonella enterica serovar typhimurium virulence in vitro and in vivo. Infect. Immun. V. 78, p. 914-26, 2010.

NAKAMURA, S., MINAMINO, T. Flagella-driven motility of bactéria. Biomol. Rev. V. 9, p. 279B, 2019.

PATTIYATHANEE, P., VILAICHONE, R.K., CHAICHANAWONGSAROJ, N. Effect of curcumin on Helicobacter pylori biofilm formation. Afr. j. biotechnol. V. 8, p. 5106-5115, 2009.

RADER, B.A., WREDEN, C., HICKS, K.G. et al. Helicobacter pylori perceives the quorum-sensing molecule AI-2 as a chemorepellent via the chemoreceptor TlpB. Microbiol. V. 157, p. 2445–2455, 2011.

RAJAGOPALA, S.V., TITZ, B., GOLL, J. et al. The protein network of bacterial motility. Mol. Syst. Biol. V. 3, p. 1-13, 2007.

SERVETAS, S.L., CARPENTER, B.M., HALEY, K.P. et al. Characterization of key Helicobacter pylori regulators identifies a role for ArsRS in biofilm formation. J. Bacteriol. V. 198, p. 2536-2548, 2016.

SPENGLER, G., MOLNAR, A., KLAUSZ, G. et al. Inhibitory action of a new proton pump inhibitor, trifluoromethyl ketone derivative, against the motility of clarithromycin-susceptible and-resistant Helicobacter pylori. Int. J. Antimicrob. Ag. V. 23, p. 631-633, 2004.

SPERANDIO, V., TORRES, A., JARVIS, B. et al. Bacteria-host communication: the language of hormones. Proc. Natl. Acad. Sci U S A. V. 100, n. 15, p. 8951-8956, 2003.

STEPANOVIC, S., VUKOVIC, D., DAKIC, I. et al. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods. V. 40, p. 175-179, 2000.

STERBENC, A., JARC, E., POLJAK, M. et al. Helicobacter pylori virulence genes. W. J. Gastroenterol. V. 25, p. 4870-4884, 2019.

STIEFEL, P., MAUERHOFER, S., SCHNEIDER, J. et al. Enzymes enhance biofilm removal efficiency of cleaners. Antimicrob. Ag. Chemother. V. 60, p. 3647–3652, 2016.

VALLEDOR, L., JORRÍN, J. Back to the basics: Maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. J. Proteomics. V. 74, p. 1-18, 2011.

WANG, Y., LIU, B., GRENIER, D. et al. Regulatory Mechanisms of the LuxS/AI-2 System and bacterial resistance. Antimicrob. Ag. Chemother. V. 63, p. 1-12, 2019.

YANG, X., SHA, K., XU, G. et al. Subinhibitory concentrations of allicin decrease uropathogenic Escherichia coli (UPEC) biofilm formation, adhesion ability, and swimming motility. Int. J. Mol. Sci. V. 17, p. 979, 2016.

YONEZAWA, H., OSAKI, T., HANAWA, T. et al. Impact of Helicobacter pylori biofilm formation on clarithromycin susceptibility and generation of resistance mutations. Plos. One. V. 8, p. 1-9, 2013.



Como Citar

Fauro, C. A. M. ., Tessari, L. C. M. ., Dos Santos, N. R. F., Correia, N. S. ., Bonacorsi, C., Bailão, A. M. ., Baeza, L. C. ., Verbisck, N. V. ., & Donofrio, F. C. . (2022). Assessing Helicobacter pylori motility and biofilm formation in subinhibitory concentrations of antimicrobials. Scientific Electronic Archives, 15(9).

Artigos mais lidos pelo mesmo(s) autor(es)