The compensatory growth of skeletal muscle cells in Amazonian catfish (Pseudoplathystoma reticulatum female x Leiarius marmoratus male)


  • T. S. Cotrim
  • D. C. Fornari
  • C. V. Araujo
  • C. U. B. Magalhães
  • D. H. Aguiar



fasting, refeeding, hypertrophy, hyperplasia, muscle tissue, fish farming


The growth characteristics and morphological pattern of skeletal muscle tissue of Amazonian catfish (Pseudoplathystoma reticulatum female x Leiarius marmoratus male) from fingerlings until juvenile stage submitted to different restriction levels during compensatory growth wereevaluated. There were four groups (G)  submitted to different levels feed restriction: Group 1 (G1)  animals that were fed for 120 days nonfasting (5% of body mass); Group 2 (G2)  animals submitted to partial fasting for 30 days (2% of body mass) and after 90 days nonfasting; Group 3 (G3)  animals submitted the partial fasting for 30 days (0,5% of body mass) and after 90 days nonfasting; Group 4 (G4) animals submitted to fasting for 30 days (0.0% of body mass) and after 90 days nonfasting.The results showed thata reduction in the diet of 2% and 0.5% of body mass during a period of fasting stimulated In G2 the total compensatory growth with 15 days of nonfasting through the muscle cells hypertrophy, G3 with 60 days and G4 with 90 days, being the last one a partial compensatory growth. Moreover, didn’t affect the hyperplastic growth of muscle cells in nonfasting, although it has stimulated an upward hyperplasia of muscle cells of G4 from the period of 60 days. The strategy of compensatory growth to the Amazonian catfish in the juvenile stage proved to be efficient with 30 days offasting and 90 days of nonfastinginducing the mechanism of muscle hypertrophy of Amazonian catfish. Therefore to evaluate the performance of the muscle cells associated with compensatory growthtechnique it can be helpful in the production system of fish farms.


ACOSTA, J; CARPIO, Y; BORROTO, I; GONZÃLEZ, et al. Myostatin gene silenced by RNAi show a zebrafish giant phenotype. Journal of biotechnology, 119(4), 324-31, 2005.

AGUIAR, D. H; BARROS M. M; C. R. PADOVANI; PEZZATO L. E. et al. Growth characteristics of skeletal muscle tissue in Oreochromisniloticus larvae fed on a lysine-supplemented diet. Journal of Fish Biology 67, p. 1287-1298, 2005.

ALI M., C. Y., ZHU X. et al. Dynamics of appetite in three fish species (Gasterosteusaculeatus, Phoxinusphoxinus and Carassiusauratusgibelio) after feed deprivation. Aquaculture Research 2, 441- 450.

Ali, M., A. Nicieza, & R. J. Wootton. (2003). Compensatory growth in fishes: a response to growth depression. Fish and Fisheries, 4:147–190, 2001.

BRODEUR, J. C., CALVO, J., CLARKE, A. & JOHNSTON, I. A. Myogenic cell cycle duration in Harpagifer species with sub-Antartic and Antartic distributions: evidence for cold compensation. Journal of Experimental Biology 206, 1011–1016, 2003.

BROOKS, S. & JOHNSTON, I. A Influence of development and rearing temperature on the distribution, ultrastructure and myosin sub-unit composition of myotomal muscle fibre types in the plaice Pleuronectesplatessa. Marine Biology 117, 501–513, 2013.

BROWN, C. R. & CAMERON, J. N. The induction of specific dynamic action in Channel catfish by infusion of essential amino acids. Physiological and BiochemicalZoology 64, 276–297, 1992a.

BROWN, C. R. & CAMERON, J. N. The relationship between specific dynamic action (SDA) and protein synthesis rates in the Channel catfish. Physiological and Biochemical Zoology 64, 298–309 1991b.

CHAPPAZ, R.; OLIVART, G.; BRUN, G.Food availability and growth rate in natural populations of the brown trout (Salmotrutta) in Crsican streams.Hydrobiol, Iztapalapa, 331, p. 63-69 1996.

DAVE G., JOHANSSON M.-L. -SJOBECK, A. et al.Metabolic and hematological effects starvation in the european eel, anguilla l.--i. carbohydrate, lipid, protein and inorganic ion metabolism.Comp. Biochem. Physiol, 52, pp. 423–430, 1975

FAUCONNEAU B., ANDRÉ S., CHMAITILLY J., LÊ BAIL P.-Y., Krieg F. & Kaushik S.J. Control of skeletal muscle fibers and adipose cells size in the flesh of rainbow trout. Journal of Fish Biology 50, 296-314, 1997.

GAYLORD, T. G.; GATLIN, D. M et al. Assessment of compensatory growth in channel catfish Ictaluruspunctatus R. and associated changes in body condition indices. Journal of the World Aquaculture Society, Baton Rouge, 31, p. 326-336, 2000.

GAYLORD, T.G. & GATLIN, D.M., III. Dietary protein and energy modiï¬cations to maximize compensatory growth of channel catï¬sh (Ictaluruspunctatus). Aquaculture, 194, 337–348, 2001.

HAGEN O, FERNANDES J.M.O, SOLBERG C, JOHNSTON I.A.Expression of growth-related genes in muscle during fasting and refeeding of juvenile Atlantic halibut, Hippoglossushippoglossus L.Comp BiochemPhysiolog,152: 47-53, 2009.

HAWKE, T.J.; GARRY, D.J. . Myogenic satellite cells physiology to molecular biology. J AppPhysiol, 91, p.534-551, 2009.

HAYWARD, R.S., NOLTIE, D.B. & WANG, N. Use of compensatory growth to double hybrid sunï¬sh growth rates. Trans. Am.Fish. Soc., 126, 316–322, 1997.

HOULIHAN, D. F., PEDERSEN, B. H., STEFFENSEN, J. F. &BRECHIN, J. Protein synthesis, growth and energetics in larval herring (Clupeaharengus) at different feedingregimes. Fish Physiology and Biochemistry 14, 195–208 , 1995.

HORNICK, J.L.; EENAEME, V., C.; GÉRARD, O et al.Mechanisms of reduced and compensatory growth. Domestic Animal Endocrinology, 19, p.121-132, 2000.

ITUASSÚ, D.R.; SANTOS, G.R.S; ROUBACH, R.; PEREIRA-FILHO, M. Desenvolvimento de tambaqui submetido a períodos de privação alimentar. Pesquisa Agropecuária Brasileira, Brasília, 39: 1199-1203, 2004.

JOBLING, M. FishBioenergetics. London: Chapman & Hall, 1994.

JOBLING.M. Are compensatory growth and catch-up growth two sides of the same coin? Aquaculture International 18, 501–510, 2010.

JOHNSTON, I. A. Muscle development and growth: potential implications for flesh quality in fish. Aquaculture 177, 99–115, 1999.

JOHNSTON, I. A. Genetic and environmental determinants of muscle growth patterns. In Muscle Development and Growth (Johnston, I. A., ed.), pp. 141–186. San Diego, CA: Academic Press, 2001

JOHNSTON, I. A. Environment and plasticity of myogenesis in teleost fish. The Journal of experimental biology, 209 (Pt 12), 2249-64, 2006.

JOHNSTON, I.A.; MACQUEEN, D.J.; WATABE, S. Molecular biotechnology of development and growth in fish muscle. Fisheries for Global Welfare and Environment, World Fisheries Congress, p. 241-262,2008.

JOHANSEN, K.A.; OVERTURF, K. Alterations in expression of genes associated with muscle metabolism and growth during nutritional restriction and refeedin and refeeding in rainbow trout. Comparative Biochemistry and Physiology, v.144, p.119-127, 2006.

KIESSLING, A., STOREBAKKEN, T. & ASGARD, T. Changes in the structure and function of the epaxial muscle of rainbow trout (O. mykiss) in relation to ration and age. I. Growth dynamics. Aquaculture 93, 335–356,1991.

KILARSKI, W. Histochemical characterization of myotomal muscle in the roach, Rutilusrutilus(L.). Journal of Fish Biology 36, 353–362,1990

KIM, M.K.; LOVELL, R.T. Effect of restricted feeding regimens on compensatory weight gain and body tissue changes in channel catfish Ictaluruspunctatus in ponds. Aquaculture, 135, p.285-293,1995.

KOUMANS, J. T. M. & AKSTER, H. A. (1995). Myogenic cells in development and growth of fish. Comparative Biochemistry and Physiology 110A, 3–20, 1995.

LAWRENCE, T.L.J & METCALFE, N.B.; MONAGHAN, P R. Fowler in Growth of farm animal’s 2nd ed. p. cm. 2002.Compensation for bad start: grow now, pay later? Trendsin Ecology & Evolution, 16, p.254-260,2001.

LOVELL, R.T. Nutrition and Feeding of Fish, 2nd ed. Kluwer Academic Publishers, Boston, London, 267 p, 1998.

MADRID JA, BOUJARD T, SANCHEZ-VAZQUEZ FJ. Feeding rhythms. In: Houlihan D, Boujard T, Jobling M (eds) Food intake in ï¬sh. Blackwell Science, UK, pp 189–215, 2001.

NEBO, C. Expressão de genes relacionados ao crescimento muscular durante a restrição alimentar e realimentação em juvenis de tilápia do Nilo, Oreochromisniloticus, linhagem chitralada. - Botucatu, Dissertação (Mestrado) – Instituto de Biociências de Botucatu, Universidade Estadual Paulista ,2011.

NEBO, C. Morfologia do tecido muscular e expressão dos genes relacionados ao crescimento e á atrofia muscular, durante a restrição alimentar e realimentação em juvenis de tilápia-do-nilo. Jaboticabal, tese (Doutorado)- Faculdade de ciências agrárias e veterinário campus de Jaboticabal, Universidade Estadual Paulista “Julio Mesquitaâ€,2015.

NIKKI, J., PIRHONEN, J., JOBLING, M. &KARJALAINEN, J. Compensatory growth in juvenile rainbow trout, Oncorhynchusmykiss (Walbaum), held individually. Aquaculture, 235, 285–296, 2004.

PALMA, H.E et al. Estratégia alimentar com ciclos de restrição e realimentação no desempenho produtivo de juvenis de tilápia do Nilo da linhagem GIFT. Cienc. Rural [online], 40, n.2, pp. 391-396,2010.

QUEIROZ. D. M. BARROS, C.M.C., SELLA, A.R., et al. Desempenho produtivo em tanques-rede de pintado amazônico (Pseudoplatystoma reticulatumx Leiarius marmoratus) alimentados com rações com diferentes níveis protéicos. InAnais do XXII Congresso brasileiro de zootecnia, 2012.

ROWLERSON, A. & VEGGETTI, A. Cellular mechanisms of post-embryonicmuscle growth in aquaculture species. In Muscle Development and Growth (Johnston, I. A., ed.San Diego, CA: Academic Press pp. 103–140, 2011.

RUEDA, F.M., MARTINEZ, F.J., ZAMORA, S., KENTOURI, M. &DIVANACH, P. Effects of fasting and refeeding on growth and body composition of red porgy, Pagruspagrus L. Aquacult. Res., 29, 447–452, 1998.

SAS INSTITUTE INC. SAS/STAT® 9.0 User’s Guide. Cary, NC: SAS Institute Inc, 2004.

SALARO, A. L. LUZ, R. K. NOGUEIRA, G. C. C. B. et al. Diferentesdensidades de estocagemnaprodução de alevinos de trairão (Hoplias cf. lacerdae). RevistaBrasileira de Zootecnia, v.32, n.5, p.1033-1036, 2003.

SKALSKI, G.T., MATTHEW E., PICHA, JAMES et al.. Variable intake, compensatory growth, and increased growth efficiency in fish: models and mechanisms Ecology86:1452–1462, 2005.

TIAN, X. & QIN, J.G. A single phase of food deprivation provoked compensatory growth in barramundi Latescalcarifer. Aquaculture, 224, 169–179, 2003.

VALENTE, L. M. P., ROCHA, E. & GOMES, E. F. S.Growth dynamics of white andred muscle fibres in fast and slow growing strains of rainbow trout. Journal of FishBiology, 55, 675–691,1999.

VALENTE LMP, MOUTOU KA, CONCEIÇÃO LEC, ENGROLA S, FERNANDES JMO, JOHNSTON IA. What determines growth potential and juvenile quality of farmed fish species? Reviews in Aquaculture (in press).5 (Suppl. 1), S168–S193, 2013.

VEGGETTI, A., MASCARELLO, F. &SCAPOLO, P. A. Muscle growth and myosin isoform transitions during development of a small teleost fish, Poeciliareticulata: a histochemical, imunohistochemical, ultrastructural and morphometric study. Anatomyand Embryology 187, 353–361,1993.

WANG, Y.; CUI, Y.; YANG, Y.; CAI, F. (2005). Partial compensatory growth in hybrid tilapia Oreochromismossambicus X O. niloticus following food deprivation. Journal of Applied Ichthyology, New Wulmstorf, 21, p. 389-393,2005.

WATABE, S. Myogenic regulatory factors. In Fish Physiology, Vol. 18, (Johnston, I. A., ed. San Diego, CA: Academic Press, pp. 19–41, 2005.

WU, L., XIE, S., ZHU, X., CUI, Y. &WOOTTON, R.J. Feeding dynamics in ï¬sh experiencing cycles of feed deprivation: a comparison of four species. Aquacult. Res., 33, 481–489, 2002.

WON, ET. &BORSKI R. J.Endocrine regulation of compensatory growth in fish. Frontiers in Endocrinology 4: 74, 2013.

ZIMMERMANN, A.M., LOWERY, M.S. Hyperplastic delevolopmentand hypertrophic growth of muscle fibers in the White sea bass (Atractoscionnobilis). J.EXP.Zool. 284, 299-308,2000.

ZHU, X., XIE, S., ZOU, Z., LEI,W., CUI, Y., YANG, Y. & WOOTTON, R.J. Compensatory growth and food consumption in gibel carp, Carassiusauratusgibelio, and Chinese longsnoutcatï¬sh, Leiocassislongrostris, experiencing cycles of feed deprivation and re-feeding.Aquaculture,241,235–247, 2004.




Como Citar

Cotrim, T. S., Fornari, D. C., Araujo, C. V., Magalhães, C. U. B., & Aguiar, D. H. (2016). The compensatory growth of skeletal muscle cells in Amazonian catfish (Pseudoplathystoma reticulatum female x Leiarius marmoratus male). Scientific Electronic Archives, 9(2), 53–66.



Ciências Biológicas

Artigos mais lidos pelo mesmo(s) autor(es)