Analysis of antioxidant enzymes and total antioxidant capacity in the midgut of Africanized Apis mellifera selected for tolerance to the neonicotinoid thiamethoxam

Autores

  • W. C. S. Pizzaia Universidade Estadual de Maringá
  • T. O. Diniz Universidade Estadual de Maringá – Departamento de Biotecnologia, Genética e Biologia Celular
  • N. C. Pereira Universidade Estadual de Maringá – Departamento de Biotecnologia, Genética e Biologia Celular
  • B. G. Silva Universidade de São Paulo – Departamento de Estatística e Experimentação Agronômica
  • A. S. Khatlab Universidade Estadual de Maringá – Departamento de Zootecnia
  • E. Gasparino Universidade Estadual de Maringá – Departamento de Zootecnia
  • A. A. Sinópolis-Giglioli Universidade Estadual de Maringá – Departamento de Biotecnologia, Genética e Biologia Celular
  • V. A. A. Toledo Universidade Estadual de Maringá – Departamento de Zootecnia
  • M. C. C. Ruvolo-Takasusuki Universidade Estadual de Maringá – Departamento de Biotecnologia, Genética e Biologia Celular

DOI:

https://doi.org/10.36560/131020201228

Palavras-chave:

selection pressure, enzymes, agrochemicals

Resumo

Agrochemicals are considered one of the factors responsible for the decline of bee population in the world, causing a huge amount of losses. The organism of these insects seeks an alternative for their survival and adaptive factors can be triggered, such as the action of antioxidant substances, which can promote protection via the digestive system. This study aimed to evaluate the enzymatic activity and total antioxidant capacity in the midgut of adult Apis mellifera workers that had been selected since 2015 to be tolerant to the neonicotinoid insecticide thiamethoxam. For this, tolerant and non-tolerant honeybees were contaminated with thiamethoxam for 24 hours. Then the midgut was dissected for the enzymatic analysis. The results obtained showed that tolerant bees presented a significant result regarding the enzymatic activity and total antioxidant capacity for the reduction of damage caused by thiamethoxam when compared to the non-tolerant group.

Biografia do Autor

W. C. S. Pizzaia, Universidade Estadual de Maringá

Universidade Estadual de Maringá – Departamento de Biotecnologia, Genética e Biologia Celular

T. O. Diniz, Universidade Estadual de Maringá – Departamento de Biotecnologia, Genética e Biologia Celular

Universidade Estadual de Maringá – Departamento de Biotecnologia, Genética e Biologia Celular

N. C. Pereira, Universidade Estadual de Maringá – Departamento de Biotecnologia, Genética e Biologia Celular

Universidade Estadual de Maringá – Departamento de Biotecnologia, Genética e Biologia Celular

B. G. Silva, Universidade de São Paulo – Departamento de Estatística e Experimentação Agronômica

Universidade de São Paulo – Departamento de Estatística e Experimentação Agronômica

A. S. Khatlab, Universidade Estadual de Maringá – Departamento de Zootecnia

Universidade Estadual de Maringá – Departamento de Zootecnia

E. Gasparino, Universidade Estadual de Maringá – Departamento de Zootecnia

Universidade Estadual de Maringá – Departamento de Zootecnia

A. A. Sinópolis-Giglioli, Universidade Estadual de Maringá – Departamento de Biotecnologia, Genética e Biologia Celular

Universidade Estadual de Maringá – Departamento de Biotecnologia, Genética e Biologia Celular

V. A. A. Toledo, Universidade Estadual de Maringá – Departamento de Zootecnia

Universidade Estadual de Maringá – Departamento de Zootecnia

M. C. C. Ruvolo-Takasusuki, Universidade Estadual de Maringá – Departamento de Biotecnologia, Genética e Biologia Celular

Universidade Estadual de Maringá – Departamento de Biotecnologia, Genética e Biologia Celular

Referências

ABOU-DONIA, M.B. Metabolism and toxicokinetics of xenobiotics. In: DERELANKO, M.J.; AULETTA, C.S. Handbook of toxicology. Boca Raton: CRC Press, 2014. p. 618- 658.

AEBI, H. Catalase in vitro. Met. Enzymol., Vol. 105, p. 121-126, 1984.

BADIOU-BÉNÉTEAU, A.; CARVALHO, S.M.; BRUNET, J.L.; CARVALHO, G.A.; BULETÉ, A.; GIROUD, B.; BELZUNCES, L.P. Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: application to the systemic insecticide thiamethoxam. Eco. Environ. Safet., Vol. 82, p. 22-31, 2012.

BEAUTY, B.J.; MARQUARDT, W.C. Fleas and the agents they transmit. In: THOMAS, R.E. The Biology of Disease Vectors. University Press of Colorado, 1996. p. 146-159.

BIANCHI M.L.P.; ANTUNES L.M.G. Free radicals and the main dietary antioxidants. Rev. Nutr., Vol. 12, p. 123-130, 1999.

BRADFORD, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analy. Biochem. Vol. 72, p. 248-254, 1976.

BRAND-WILIAMS, W.; CUVELIER, M.E.; BERSET, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. Vol. 28, p. 25-30, 1995.

BUEGE, J.A.; AUST, S.D. Microsomal lipid peroxidation. Met. Enzymol., Vol. 52, p. 302-310, 1978.

CHAKRABARTI, P.; RANA, S.; SARKAR, S.; SMITH, B.; BASU, P. Pesticide-induced oxidative stress in laboratory and field populations of native honey bees along intensive agricultural landscapes in two Eastern Indian states. Apidol., Vol. 46, p. 107-129, 2015.

CLAUDIANOS, C., RANSON, H., JOHNSON, R.M., BISWAS, S., SCHULER, M.A., BERENBAUM, M.R., EYEREISEN, R., OAKESHOTT, J.G. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insec. Mol. Bio., Vol. 15, p. 615-636, 2006.

CUI, H.; KONG, Y.; ZHANG, H. Oxidative Stress, Mitochondrial Dysfunction, and Aging. J. Sig. Transd., Vol. 10, p. 1-13, 2012.

DANDEKAR, S.P.; NADKARNI, G.D.; KULKARNI, V.S.; PUNEKAR, S. Lipid Peroxidation and antioxidant enzymes in male infertility. J. Post. Medic., Vol. 48, p. 186-190, 2002.

DMOCHOWSKA-ÅšLĘZAK, K.; GIEJDASZ, K.; FLISZKIEWICZ, M.; ŻÓÅTOWSKA, K. Variations in antioxidant defense during the development of the solitary bee Osmia bicornis. Apidol, Vol. 46, p. 432-444, 2014.

EREL, O. A novel direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Bioch., Vol. 37, p. 277-285, 2004.

FELTON, G.W.; SUMMERS, C.B. Antioxidant systems in insects. Arc. Insec. Bioch. Physio., Vol. 29, p. 187-197, 1995.

FIELD, L.M.; CRICK, S.E.; DEVONSHIRE, A.L. Polymerase chain reactionâ€based identification of insecticide resistance genes and DNA methylation in the aphid Myzus persicae (Sulzer). Ins. Mol. Bio., Vol. 5, p. 197-202, 1996.

FIELD, L.M. Methylation and expression of amplified esterase genes in the aphid Myzus persicae (Sulzer). Bioch. J., Vol. 349, p. 863-868, 2000.

FRIDOVICH, I. Superoxide Radical and Superoxide Dismutases. Ann. Rev. Bioch., Vol. 64, p. 97-112, 1995.

GIANNINI, T.C.; CORDEIRO, G.D.; FREITAS, B.M.; SARAIVA, A M.; IMPERATRIZ-FONSECA, V.L. The dependence of crops for pollinators and the economic value of pollination in Brazil. J. Eco. Entomol., Vol. 108, p. 849-857, 2015.

GILBERT, M.D.; WILKINSON, C.F. Microsomal oxidases in the honey bee, Apis mellifera (L.) Pest. Bioch. Physio., Vol. 4, p. 56-66, 1974.

GLASTAD, K.M.; HUNT, B.G.; YI, S.V.; GOODISMAN, M.A.D. DNA methylation in insects: on the brink of the epigenomic era. Ins. Mol. Bio., Vol. 20, p. 553-565, 2011.

HALLIWELL, B.; GUTTERIDGE, J.M.C. Free radicals in biology and medicine. 4. ed. Oxford: Oxford University Press, 2007. 704 p.

HEMINGWAY, J. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Ins. Bio. Mol. Biol., Vol. 30, p. 1009-1015, 2000.

HERSHKO C. Mechanism of iron toxicity and its possible role in red cell membrane damage. Sem. Hemat., Vol. 26, p. 277-85, 1989.

JOVANOVIC-GALOVIC, A.; BLAGOJEVIC, D.; GRUBOR-LAJSIC, G.; WORLAND, R.; SPASIC, M.B. Role of antioxidant defense during different stages of preadult life cycle in European corn borer (Ostrinia nubilalis, Hübn.): diapause and metamorphosis. Arc. Ins. Bio. Physio., Vol. 55, p.79-89, 2004.

KORAYEM, A.M; KHODAIRY, M.M.; ABDEL-AAL, A.A; EL-SONBATY, A.A.M. The protective strategy of antioxidant enzymes against hydrogen peroxide in honey bee, Apis mellifera during two different seasons. J. Bio. Eart. Sci., Vol. 2, p. 93-109, 2012.

LANDIM, C.C. Abelhas – Morfologia e função de sistemas. Ed. I. São Paulo: Editora UNESP, 2009. 408 p.

LI, X.; SCHULER, M.A.; BERENBAUM, M.R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. An. Rev. Entomol., Vol. 52, p. 231-253, 2007.

MAMIDALA, P.; JONES, S.C.; MITTAPALLI, O. Metabolic resistance in bed bugs. Insec., Vol. 2, p. 36-48, 2011.

MARKLUND, S.; MARKLUND, G. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. Eur. J. Biochem. Vol. 47, p. 469-474, 1974.

MATTOS, I.M.; SOUZA, J.; SOARES, A.E.E. Differential performance of honey bee colonies selected for bee-pollen production through instrumental insemination and free-mating technique. Arq. Bras. Med. Vet. Zoo., Vol. 68, p. 1369-1373, 2016.

MELLO-FILHO, A.C.; HOFFMAN, M.E.; MENEGHINI, R. Cell killing and DNA damage by hydrogen peroxide are mediated by intracellular iron. Bio. J., Vol. 218, p. 273-275, 1983.

NEMEC, A.; DROBNI-KOSOROK, M.; SKITEK, M.; PAVLICA, Z.; GALAC, S.; BUTINAR, J. Total antioxidant capacity (TAC) values and their correlation with individual antioxidants in serum of healthy beagles, Ac. Vet., Vol. 69, p. 297-303, 2000.

PERRY, T.; BATTERHAM, P.; DABORN, P.J. The biology of insecticidal activity and resistance. Ins. Bio. Mol. Biol, Vol. 41, p. 411-422, 2011.

PIZZAIA, W.C.S. Rainhas Apis mellifera africanizadas tolerantes a inseticida neonicotinoide. Maringá: Universidade Estadual de Maringá, 2016. 46p. Dissertação (Mestrado em Genética e Melhoramento).

PLAPP, F.W.; CASIDA, J. Induction by DDT and Dieldrin of Insecticide Metabolism by House Fly Enzymes123. J. Eco. Entomol., Vol. 63, p. 1091-1092, 1970.

ROSSI, A.C.; ROAT, T.C.; TAVARES, D.A.; CINTRA-SOCOLOWSKI, P.; MALASPINA, O. Effects of sublethal doses of imidacloprid in malpighian tubules of africanized Apis mellifera (Hymenoptera, Apidae). Micros. Res. Techn., Vol. 76, p. 552-558, 2013.

SHAN, X.; AW, T.Y.; JONES, D.P. Glutathione-dependent protection against oxidative injury. Pharmacol. Ther., Vol. 47, p. 61-71, 1990.

SANCHEZ-BAYO, F.; GOULSON, D.; PENNACCHIO, F.; NAZZI, F.; GOKA, K., DESNEUX, N. Are bee diseases linked to pesticides? A brief review. Environ. Intern., Vol. 89, p. 7-11, 2016.

SIMONE-FINSTROM, M.; LI-BYARLAY, H.; HUANG, M. H.; STRAND, M. K.; RUEPPELL, O.; TARPY, D. R. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Scie. Rep., Vol. 6, p. 1-10, 2016.

SNODGRASS, R. E. Anatomy and physiology of the honeybees. New York: Comstock Publishing Associates, 1956.

STEIN, K.; COULIBALY, D.; STENCHLY, K.; GOETZE, D.; POREMBSKI, S.; LINDNER, A.; KONATÉ, S.; LINSENMAIR. E.K. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa. Sci. Report., Vol. 7, p. 1-10, 2017.

TAVARES, D.A.; ROAT, T.C.; CARVALHO, S.M.; SILVA-ZACARIN, E.C.M.; MALASPINA, O. In vitro effects of thiamethoxam on larvae of Africanized honey bee Apis mellifera (Hymenoptera: Apidae). Chem., Vol. 135, p. 370-378, 2015.

THOMPSON, H.; COULSON, M.; RUDDLE, N.; WILKINS, S.; HARKIN, S. Thiamethoxam: Assessing flight activity of honeybees foraging on treated oilseed rape using radio frequency identification technology. Environ. Toxic. Chem., Vol. 35, p. 385-393, 2015.

WANG, Y.; JORDA, M.; JONES, P.L.; MALESZKA, R.; LING, X.; ROBERTSON, H.M.; ROBINSON, G.E. Functional CpG Methylation System in a Social Insect. Scienc., Vol. 314, p. 645-647, 2006.

WILLIAMSON, S.M.; WILLIS, S.J.; WRIGHT, G.A. Exposure to neonicotinoids influences the motor function of adult worker honeybees. Ecotoxi., Vol. 23, p. 1409-1418, 2014.

WU, H.; LIU, J.; ZHANG, R.; ZHANG, J.; GUO, Y.; MA, E. Biochemical effects of acute phoxim administration on antioxidant system and acetylcholinesterase in Oxya chinensis (Thunberg) (Orthoptera: Acrididae). Pest. Bioch. Physiol., Vol. 100, p. 23-26, 2011.

WYATT, G.R.; PAN, M.L. Insect Plasma Proteins. An. Rev. Bioche., Vol. 47, p. 779-817, 1978.

ZHONG, X.W.; WANG, X.H.; TAN, X.; XIA, Q.Y.; XIANG, Z.H.; ZHAO, P. Identification and molecular characterization of a chitin deacetylase from Bombyx mori peritrophic membrane. Int. J. Mol. Sci., Vol. 15, p. 1946-1961, 2014.

Downloads

Publicado

2020-09-30

Como Citar

Pizzaia, W. C. S., Diniz, T. O., Pereira, N. C., Silva, B. G., Khatlab, A. S., Gasparino, E., Sinópolis-Giglioli, A. A., Toledo, V. A. A., & Ruvolo-Takasusuki, M. C. C. (2020). Analysis of antioxidant enzymes and total antioxidant capacity in the midgut of Africanized Apis mellifera selected for tolerance to the neonicotinoid thiamethoxam. Scientific Electronic Archives, 13(10), 50–57. https://doi.org/10.36560/131020201228

Edição

Seção

Ciências Agrárias