Mycotoxin absorbents in dairy cattle

Autores

  • João Rafael de Assis UNIFASIPE – Centro Universitário
  • Aline Cardoso Mota de Assis Universidade do Estado de Mato Grosso – Campus Sinop
  • Geferson Antonio Fernandes Universidade Federal de Mato Grosso, Campus Sinop
  • Eloiza Baena da Silva UNIFASIPE – Centro Universitário
  • Juslei Figueiredo da Silva UNIFASIPE – Centro Universitário
  • Rafael Laurindo Morales UNIFASIPE – Centro Universitário
  • Alvaro Carlos Galdos-Riveros UNIFASIPE – Centro Universitário
  • Igor Vivela Cruz UNIFASIPE – Centro Universitário

DOI:

https://doi.org/10.36560/141120211446

Palavras-chave:

Toxin, Livestock feed, Mycotoxin absorber

Resumo

Ingestion of mycotoxins by animals causes damage to the production system and can still be transferred to animal products, including milk. Due to its carcinogenic and genotoxic potential, the intake of mycotoxins, especially aflatoxins, is relevant to human health. The use of mycotoxin-absorbing agents has gained attention in dairy cattle nutrition. Therefore, it aimed to conduct a literature review on the use of mycotoxin absorbers in the dairy cattle diet. Mycotoxin absorbing agents can be of organic or inorganic origin, the inorganic ones being the most studied. Inorganic and organic agents have been shown to be effective in reducing the transfer of aflatoxin M1 to milk. However, the inclusion of mixed agents (organic and inorganic) is promising as a potential for mycotoxin absorption. In general, organic, inorganic and mixed absorbents showed positive results in improving the antioxidant and inflammatory status in the liver.

Referências

AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA (ANVISA, 2011). Resolução de Diretoria Colegiada n°.7, de 18 de fevereiro de 2011. Limites máximos tolerados para micotoxinas em alimentos. Disponível em: < https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2011/res0007_18_02_2011_rep.html>. Acesso em: 03/08/2021.

ANFOSSI, L.; BAGGIANI, C.; GIOVANNOLI, C.; GIRAUDI, G. Mycotoxins in food and feed: Extraction, analysis and emerging technologies for rapid and on-field detection. Recent Patents on Food, Nutrition & Agriculture, Jun;2(2), p. 140-53,

ASSIS, J. R.; ASSIS, A. C. M.; NUNES, D.; CARLOS, A. B.; CARVALHO T. T.; GALDOS-RIVEROS, A. C. Micotoxinas no metabolismo e desempenho de animais ruminantes. Journal of Biology & Pharmacy, v. 15, n. 4, out/dez 2019.

AVANTAGGIATO, G.; SOLFRIZZO, M.; VISCONTI, A. Recent advances on the use of adsorbent materials for detoxification of Fusarium mycotoxins. Food Addit. Contam., 22, 379–388, 2005.

BAGLIERI, A.; REYNERI, A.; GENNARI, M.; NEGRE, M. Organically modified clays as binders of fumonisins in feedstocks. J. Environ. Sci. Health, 48, 776–783, 2013.

BHAT, R., RAI, R.V., KARIM, A.A.Mycotoxins in food and feed: present status and future concerns. Compr. Rev. Food Sci. Food Saf., 9, 57–81, 2010.

CAST (Council for Agricultural Science and Technology). Mycotoxins: Risks in Plant, Animal, and Human Systems. CAST, Ames, IA, 2003.

CAVRET, S.; LAURENT, N.; VIDEMANN, B.; MAZALLON, M.; LECOEUR, S. Assessment of deoxynivalenol (DON) adsorbents and characterisation of their efficacy using complementary in vitro tests. Food Addit. Contam., 27, 43–53, 2010.

DAKOVIC, A.; KRAGOVIC, M.; ROTTINGHAUS, G. E.; SEKULIC, Z., MILICEVIC, S.; MILONJIC, S. K.; ZARIC, S. Influence of natural zeolitic tuff and organozeolites surface charge on sorption of ionizable fumonisin B1. Colloids Surf., B 76, 272–278, 2010.

DAKOVIC, A.; TOMASEVIC-CANOVIC, M.; ROTTINGHAUS, G.; DONDUR, V.; MASIC, Z. Adsorption of ochratoxin A on octadecyldimethyl benzyl ammonium exchangedclinoptilolite- heulandite tuff. Colloids Surf., B 30, 157–165, 2003.

DI GREGORIO, M. C.; DE NEEFF, D. V.; JAGER, A. V.; CORASSIN, C. H.; DE PINHO CARÃO, A. C.; DE ALBUQUERQUE, R.; DE AZEVEDO, A. C.; FERNANDES OLIVEIRA, C. A. Mineral adsorbent for prevention mycotoxins in animal feed. Toxin Rev., 33, 125–135, 2014.

DIAZ, D. E., W. M. HAGLER, J. T. BLACKWELDER, J. A. EVE, B. A. HOPKINS, K. L. ANDERSON, F. T. JONES, AND L. W. WHITLOW. Aflatoxin binders II: Reduction of aflatoxin M1 in milk by sequestering agents of cows consuming aflatoxin in feed. Mycopathologia, 157:233–241, 2004.

EFSA (European Food Safety Authority). Opinion of the scientific panel on contaminants in the food chain on a request from the Commission related to aflatoxin B1 as undesirable substance in animal feed. EFSA J. 39, p. 1–27, 2004. Disponível em: <https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2004.39>. Acesso em: 03/08/2021.

FAUCET-MARQUIS, V.; JOANNIS-CASSAN, C.; HADJEBA-MEDJDOUB, K.; BALLET, N.; PFOHL- LESZKOWICZ, A. Development of an in vitro method for the prediction of mycotoxin binding on yeast-based products: case of aflatoxin B1, zearalenone and ochratoxin A. Appl. Microbiol. Biotechnol., 98, 7583–7596, 2014.

FIRMIN, S.; MORGAVI, D. P; YIANNIKOURIS, A.; BOUDRA, H. Effectiveness of modified yeast cell wall extracts to reduce aflatoxin B1 absorption in dairy ewes. J. Dairy Sci., 94 :5611–5619, 2011.

FOOD AND DRUG ADMINISTRATION (2000). Guidance for Industry: Action Levels for Poisonous or Deleterious Substances in Human Food and Animal Feed. Disponível em: <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-action-levels-poisonous-or-deleterious-substances-human-food-and-animal-feed#afla>. Acesso em 03/07/2021.

FRUHAUF, S.; SCHWARTZ, H.; OTTNER, F.; KRSKA, R.; VEKIRU, E. Yeast cell based feed additives: studies on aflatoxin B1 and zearalenone. Food Addit. Contam., 29, 217–231, 2012.

GALLO, A.; MINUTI, A.; BANI, P.; BERTUZZI, T.; PICCIOLI CAPPELLI, F.; DOUPOVEC, B.; FAAS, J.; SCHATZMAYR, D.; TREVISI, E. A mycotoxin-deactivating feed additive counteracts the adverse effects of regular levels of Fusarium mycotoxins in dairy cows. Journal of Dairy Science, vol. 103 No. 12, 2020.

GALLO, A.; ROCCHETTI, G.; PICCIOLI CAPPELLI, F.; PAVONE, S.; MULAZZI, A.; KUIJK, S. V.; HAN, Y.; TREVISI, E. Effect of a Commercial Bentonite Clay (Smectite Clay) on Dairy Cows Fed Aflatoxin-Contaminated Feed. Dairy, 1, 135–153, 2020.

GALVANO, F.; PIETRI, A.; BERTUZZI, T.; FUSCONI, G.; GALVANO, M.; PIVA, A.; PIVA, G. Reduction of carry-over of aflatoxin from cow feed to milk by addition of activated carbons. J. Food Prot., 59, p. 55–554, 1996.

GONÇALVES, B. L.; GONÇALVES, J. L.; ROSIM, R. E.; CAPPATO, L. P.; CRUZ, A. G.; OLIVEIRA, C. A. F.; CORASSIN, C. H. Effects of different sources of Saccharomyces cerevisiae biomass on milk production, composition, and aflatoxin M1 excretion in milk from dairy cows fed aflatoxin B1. Journal of Dairy Science, Vol. 100 No. 7, 2017.

HARPER, A. F.; ESTIENNE, M. J.; MELDRUM, J. B.; HARRELL, R. J.; DIAZ, D. E. Assessment of a hydrated sodium calcium aluminosilicate agent and antioxidant blend for mitigation of aflatoxin-induced physiological alterations in pigs. J. Swine Health Prod., 18, 282–289, 2010.

HUWIG, A.; FREIMUND, S.; KAPPELI, O.; DUTLER, H. Mycotoxin detoxication of animal feed by different adsorbents. Toxicol. Lett., 122, 179–188, 2001.

IARC (International Agency for Research on Cancer). Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. Summary of data reported and evaluation. In: IARC Monographs on the Evaluation of the Carcinogenic Risk to Humans, v. 82, p 171–175, Int. Agency Res. Cancer, Lyon, France, 2002.

JIANG, Y.; OGUNADE, I. M.; KIM, D. H.; LI, X.; PECH-CERVANTES, A. A.; ARRIOLA, K. G.; OLIVEIRA, A. S.; DRIVER, J. P.; FERRARETTO, L. F.; STAPLES, C. R.; VYAS, D.; ADESOGAN, A. T. Effect of adding clay with or without a Saccharomyces cerevisiae fermentation product on the health and performance of lactating dairy cows challenged with dietary aflatoxin B1. Journal of Dairy Science, vol. 101 No. 4, 2018.

KABAK, B.; DOBSON, A. D. W.; VAR, I. Strategies to prevent mycotoxin contamination of food and animal feed: a review. Crit. Rev. Food Sci. Nutr., 46, 593–619, 2006.

KISSELL, L.; DAVIDSON, S.; HOPKINS, B. A.; SMITH, G. W.; WHITLOW, L. W. Effect of experimental feed additives on aflatoxin in milk of dairy cows fed aflatoxin-contaminated diets. Journal of Animal Physiology and Animal Nutrition, 97 (2013) 694–700, 2012.

KOLOSOVA, A.; STROKA, J. Substances for reduction of the contamination of feed by mycotoxins. A review. World Mycotoxin J., 4, 225–256, 2011.

KONG, C.; SHIN, S. Y.; KIM, B. G. Evaluation of mycotoxin sequestering agents for aflatoxin and deoxynivalenol: an in vitro approach. SpringerPlus, 3, 346–351, 2014.

KUTZ, R. E.; J. D. SAMPSON, L. B. POMPEU, D. R. LEDOUX, J. N. SPAIN, M. VAZQUEZ-ANON, AND G. E. ROTTINGHAUS. Efficacy of Solis, NovasilPlus, and MTB-100 to reduce aflatoxin M1 levels in milk of early to mid-lactation dairy cows fed aflatoxin B1. J. Dairy Sci., 92:3959–3963, 2009.

KUTZ, R. E.; SAMPSON, J. D.; POMPEU, L. B.; LEDOUX, D. R.; SPAIN, J. N.; VÁZQUEZ-AÑÓN, M.; ROTTINGHAUS, G. E. Efficacy of Solis, NovasilPlus, and MTB-100 to reduce aflatoxin M1 levels in milk of early to mid lactation dairy cows fed aflatoxin B1. Journal of Dairy Science, vol. 92 No. 8, 2009.

LIU, Y.; WU, F. Global burden of aflatoxin-induced hepatocellular carcinoma: A risk assessment. Environ. Health Perspect., 118, p. 818–824, 2010.

MAGNOLI, A. P.; MONGE, M. P.; MIAZZO, R. D.; CAVAGLIERI, L. R.; MAGNOLI, C. E.; MERKIS, C. I.; CRISTOFOLINI, A. L.; DALCERO, A. M.; CHIACCHIERA, S. M. Effect of low levels of aflatoxin B-1 on performance, biochemical parameters, and aflatoxin B1 in broiler liver tissues in the presence of monensin and sodium bentonite. Poultry Sci., 90, 48–58, 2011.

MAKI, C. R.; HANEY, S.; WANG, M.; WARD, S. H.; RUDE, B. J.; BAILEY, R. H.; HARVEY, R. B.; PHILLIPS, T. D. Calcium Montmorillonite Clay for the Reduction of Aflatoxin Residues in Milk and Dairy Products. Dairy and Vet Sci J., 2017; 2(3): 555587, 2017.

MAKI, C. R.; MONTEIROB, A. P. A.; ELMOREA, S. E.; TAOB, S.; BERNARDB, J. K; HARVEYC, R. B.; ROMOSERA, A. A.; PHILLIPS, T.D. Calcium montmorillonite clay in dairy feed reduces aflatoxin concentrations in milk without interfering with milk quality, composition or yield. Animal Feed Science and Technology, 214, 130–135, 2016a.

MAKI, C. R.; THOMAS, A. D.; ELMORE, S. E.; ROMOSER, A. A.; HARVEY, R. B.; RAMIREZ-RAMIREZ, H. A.; PHILLIPS, T. D. Effects of calcium montmorillonite clay and aflatoxin exposure on dry matter intake, milk production, and milk composition. Journal of Dairy Science, Vol. 99 No. 2, 2016b.

MIAZZO, R.; PERALTA, M. F.; MAGNOLI, C.; SALVANO, M.; FERRERO, S.; CHIACCHIERA, S. M.; CARVALHO, E. C.; ROSA, C. A.; DALCERO, A. Efficacy of sodium bentonite as a detoxifier of broiler feed contaminated with aflatoxin and fumonisin. Poultry Sci., 84, 1–8, 2005.

NEEFF, D. V.; LEDOUX, D. R.; ROTTINGHAUS, G. E.; BERMUDEZ, A. J.; DAKOVIC, A.; MURAROLLI, R. A.; OLIVEIRA, C. A. F. In vitro and in vivo efficacy of a hydrated sodium calcium aluminosilicate to bind and reduce aflatoxin residues in tissues of broiler chicks fed aflatoxin B1. Poultry Sci., 92, 131–137, 2013.

OGUNADE, I. M.; ARRIOLA, K. G.; JIANG, Y.; DRIVER, J. P.; STAPLES, C. R.; ADESOGAN, A. T. Effects of 3 sequestering agents on milk aflatoxin M1 concentration and the performance and immune status of dairy cows fed diets artificially contaminated with aflatoxin B. J. Dairy Sci., 99:6263–6273, 2016.

PATE, R. T.; PAULUS COMPART, D. M.; CARDOSO, F. C. Aluminosilicate clay improves production responses and reduces inflammation during an aflatoxin challenge in lactating Holstein cows. J. Dairy Sci., 101:1–14, 2018.

PFOHL-LESZKOWICZ, A.; HADJEBA-MEDJDOUB, K.; BALLET, N.; SCHRICKX, J.; FINK-GREMMELS, J. Assessment and characterisation of yeast-based products intended to mitigate ochratoxin exposure using in vitro and in vivo models. Food Addit. Contam., 32, 604–616, 2015.

PHILLIPS, T. D.; AFRIYIE-GYAWU, E.; WILLIAMS, J.; HUEBNER, H.; ANKRAH, N. A.; OFORI-ADJEI, D.; JOLLY, P.; JOHNSON, N.; TAYLOR, J.; MARROQUIN-CARDONA, A.; XU, L.; TANG, L.; WANG, J. S. Reducing human exposure to aflatoxin through the use of clay: a review. Food Addit. Contam., 25, 134–145, 2008.

QUEIROZ, O. C. M.; HAN, J. H.; STAPLES, C. R.; ADESOGAN, A. T. Effect of adding a mycotoxin-sequestering agent on milk aflatoxin M1 concentration and the performance and immune response of dairy cattle fed an aflatoxin B1-contaminated diet. Journal of Dairy Science, vol. 95 No. 10, 2012.

RAMOS, A. J.; FINK-GREMMELS, J.; HERNÁNDEZ, E. Prevention of toxic effects of mycotoxins by means of nonnutritive adsorbent compounds. J. Food Prot., 59, 631–641, 1996a.

RAMOS, A. J.; HERNÁNDEZ, E.; PLA-DELFINA, J. M.; MERINO, M. Intestinal absorption of zearalenone and in vitro study of non-nutritive sorbent materials. Int. J. Pharm., 128, 129–137, 1996b.

RAO, S. B. N.; CHOPRA, R. C. Influence of sodium bentonite and activated charcoal on aflatoxin M1 excretion in milk of goats. Small Ruminant Research, 41 (2001) 203–213, 2001.

RINGOT, D.; LERZY, B.; CHAPLAIN, K.; BONHOURE, J. P.; AUCLAIR, E.; LARONDELLE, Y. In vitro biosorption of ochratoxin A on the yeast industry by-products: comparison of isotherm models. Bioresour. Technol., 98, 1812–1821, 2007.

RODRIGUES, R. O.; RODRIGUES, R. O.; LEDOUX, D. R.; ROTTINGHAUS, G. E.; BORUTOVA, R.; AVERKIEVA, O.; MCFADDEN, T. B. Feed additives containing sequestrant clay minerals and inactivated yeast reduce aflatoxin excretion in milk of dairy cows. Journal of Dairy Science, vol. 102, no. 7, 2019.

SHETTY, P. H.; JESPERSEN, L. Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends Food Sci. Technol., 17, 48–55, 2006.

SULZBERGER, S. A.; MELNICHENKO, S.; CARDOSO, F. C. Effects of clay after an aflatoxin challenge on aflatoxin clearance, milk production, and metabolism of Holstein cows. Journal of Dairy Science, vol. 100 No. 3, 2017.

UPADHAYA, S. D.; PARK, M. A.; HA, J. K. Mycotoxins and their biotransformation in the rumen: A review. Asian-australasian. J. Anim. Sci., 23, 1250–1260, 2010.

VEKIRU, E.; FRUHAUF, S.; SAHIN, M.; OTTNER, F.; SCHATZMAYR, G.; KRSKA, R. Investigation of various adsorbents for their ability to bind aflatoxin B1. Mycotox. Res., 23, 27–33, 2007.

WANG, J. P.; CHI, F.; KIM, I. H. Effects of montmorillonite clay on growth performance, nutrient digestibility, vulva size, faecal microflora, and oxidative stress in weaning gilts challenged with zearalenone. Anim. Feed Sci. Technol., 178, 158–166, 2012.

WEATHERLYA, M. E.; PATEA, R. T.; ROTTINGHAUSB, G. E.; ROBERTI FILHOC, F. O.; CARDOSOA, F. C. Physiological responses to a yeast and clay-based adsorbent during an aflatoxin challenge in Holstein cows. Animal Feed Science and Technology, 235, 147–157, 2018.

XIONG, J. L.; WANG, Y. M.; ZHOU, H. L.; LIU, J. X. Effects of dietary adsorbent on milk aflatoxin M1 content and the health of lactating dairy cows exposed to long-term aflatoxin B1 challenge. J. Dairy Sci., 101:8944–8953, 2018.

XIONG, J. L.; WANG, Y. M.; NENNICH, T. D.; LI, Y.; LIU, J. X. Transfer of dietary aflatoxin B1 to milk aflatoxin M1 and effect of inclusion of adsorbent in the diet of dairy cows. Journal of Dairy Science Vol. 98 No. 4, 2015.

YIANNIKOURIS, A.; JOUANY, J.P. Mycotoxins in feeds and their fate in animals: a review. Animal Research, v.51, p.81-99, 2002.

Publicado

2021-10-29

Como Citar

Assis, J. R. de ., Assis, A. C. M. de ., Fernandes, G. A. ., Silva, E. B. da ., Silva, J. F. da ., Morales, R. L. ., Galdos-Riveros, A. C. ., & Cruz, I. V. . (2021). Mycotoxin absorbents in dairy cattle. Scientific Electronic Archives, 14(11). https://doi.org/10.36560/141120211446

Artigos mais lidos pelo mesmo(s) autor(es)