Intrathecal administration of a novel pyrazolyl-thiazole derivative induces delayed antinociception in mice

Autores

  • A. H. Souza
  • M. A. Rubin
  • P. D. Sauzem
  • G. S. Sant’Anna
  • G. D. Dalmolin
  • C.C. Drewes
  • M. N. Muniz
  • R. V. Lourega
  • H. G. Bonacorso
  • N. Zanatta
  • M. A. P. Martins
  • V. D. G. Sinhorin

DOI:

https://doi.org/10.36560/942016370

Palavras-chave:

Intrathecal, antinociception, thiazole derivative, writhing test, hot-plate test, nonsteroidal anti-inflammatory drugs

Resumo

In this study we investigated whether the intrathecal administration (i.t.) of the novel pyrazolyl-thiazole derivative 2-[5-trichloromethyl-5-hidroxy-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl]-4-(4-bromophenyl)-5-methylthiazole (B50)  caused antinociception in adult male mice, using the hot plate and acetic acid writhing assays. B50 (200 nmol/ 5 ml, i.t.) caused antinociception 90-120 minutes after its administration. Naloxone (8.25 mmol/ kg, s.c.) reverted the antinociceptive action of B50 (200 nmol/ 5 ml, i.t.), in the acetic acid writhing assay, suggesting that opioid mechanisms are involved in the antinociception caused by B50. B50 had no effect on spontaneous locomotion or rotarod performance, indicating that the currently reported antinociceptive effect of B50 is not related to unspecific motor effects.

Referências

Rang HP & Urban L (1995). New molecules in analgesia. Brithish Journal of Anaesthesia, 75: 145-156.

Hoskin PJ & Hanks G W (1991). Opioid agonist-antagonist drugs in acute and chronic pain states. Drugs, 41: 326-344. DOI:10.2165/00003495-199141030-00002

Zadina JE, Hackler L, Ge L & Dastin AJ (1997). A potent and selective endogenous agonist for the ï­-opiate receptor. Nature, 386: 499-502.

Cashman JN (1996). The mechanisms of action of NSAIDs in analgesia. Drugs, 52: 13-23. DOI: 10.2165/00003495-199600525-00004

de Souza FR, Fighera M R, Lima TTF, Bastiani J, Barcellos IB, Almeida CE, Oliveira MR de, Bonacorso HG, Flores AE & Mello CF (2001). 3-Methyl-5-hydroxy-5-trichloromethyl-1-H-1-pryrazolcarboxyamide induces antinociception. Pharmacology, Biochemistry, and Behavior, 68: 525-530. DOI:10.1016/S0091-3057(01)00453-1

de Souza FR, Souza VT, Ratzalaff V, Borges LP, Oliveira MR, Bonacorso HG, Zanatta N, Martins MAP & Mello CF (2002). Hypothermic and antipyretic effects of 3-methyl- and 3-phenyl-5-hydroxy-5-trichloromethyl-4,5-dihydro-1H-pyrazole-1- carboxyamides. European Journal of Pharmacology, 451: 141-147. DOI: 10.1016/S0014-2999(02)02225-2

Godoy MCM, Fighera MR, Souza FR, Flores AE, Rubin MA, Oliveira MR, Zanatta N, Martins MAP, Bonacorso HG & Mello CF (2004). ï¡2 – Adrenoceptors and 5-HT receptors mediate the antinociceptive effect of new pryrazolines, but not of dipyrone. European Journal of Pharmacology, 496: 93-97. DOI: 10.1016/j.ejphar.2004.05.045

Tabarelli Z, Rubin MA, Berlese DB et al. (2004). Antinociceptive effect of novel pryrazolines in mice. Brazilian Journal of Medical And Biological Research, 37: 1531-1540.DOI: 10.1590/S0100-879X2004001000013

Zimmermann M (1983). Ethical guidelines for investigations of experimental pain in conscious animals. Pain, 16: 109-110.

Bonacorso HG, Muniz MN, Wastowski AD, Zanatta N & Martins MAP (2003). Efficient syntesis and dehydration reaction of trichloromethylated 2- (3-Phenyl-5-hydroxy-4,5-dihydro-1 H-pyrazol-1-yl)-4-aryl-5-alkylthiazoles. Heteroatom Chemistry, 14: 132-137. DOI: 10.1002/hc.10113

Hylden J L K & Wilcox G L (1980). Intrathecal morphine in mice: a new technique. European Journal of Pharmacology, 67: 313-316.

Hayaschi G & Takemori AE (1971). The type of analgesic-receptor interaction involved in certain analgesic assays. European Journal of Pharmacology, 16: 63-66.

Tsuda M, Suzuky T, Misawa M & Nagase H (1996). Involvement of the opioid system in the anxiolytic effect of diazepam in mice. European Journal of Pharmacology, 307: 7-14. DOI: 10.1016/0014-2999(96)00219-1

Hunskaar S, Berge O & Hole K (1986). A modified hot-plate test sensitive to mild analgesics. Behavior Brain Research, 21: 101-108.DOI:10.1016/0166-4328(86)90088-4

Powell JK, Abul-Husn NS, Jhamandas A, Olmstead MC, Beninger RJ & Jhamandas K (2002). Paradoxical effects of the opioid antagonist naltrexone on morphine analgesia, tolerance, and reward in rats. Journal of Pharmacology and Experimental Therapeutics, 300: 588-596. DOI: 10.1124/jpet.300.2.588

Schreiber S, Rigai T, Katz Y & Pick CG (2002). The antinociceptive effect of mirtazapine in mice is mediated through serotonergic, noradrenergic and opioid mechanisms. Brain Research Bulletin, 58: 601-605.DOI:10.1016/S0361-9230(02)00825-0

Kolesnicov YA, Cristea M & Pasternak GW (2003). Analgesic Synergy Between Topical morphine and Butamben in mice. Anesthesia & Analgesia, 97: 1103-1107.

Crain SM & Shen KF (1995). Ultra-low concentrations of naloxone selectively antagonize excitatory effects of morphine on sensory neurons, thereby increasing its antinociceptive potency and attenuating tolerance/dependence during chronic cotreatment. Proceedings of the National Academy of Sciences , 92: 10540-10544.

Crain SM & Shen KF (1998). Modulation of opioid analgesia, tolerance and dependence by Gs- coupled, GM1 ganglioside-regulated opioid receptor functions. Trends in Pharmacological Sciences, 19: 358-365. DOI:10.1016/S0165-6147(98)01241-3

De Souza EB, Schmidt WK & Kuhar MJ (1998). Nalbuphine: an autoradiographic opioid receptor binding profile in the central nervous system of an agonist/antagonist analgesic. Pharmacology and Experimental Therapeutics, 244: 391-402.

Downloads

Publicado

2016-09-22

Como Citar

Souza, A. H., Rubin, M. A., Sauzem, P. D., Sant’Anna, G. S., Dalmolin, G. D., Drewes, C., Muniz, M. N., Lourega, R. V., Bonacorso, H. G., Zanatta, N., Martins, M. A. P., & Sinhorin, V. D. G. (2016). Intrathecal administration of a novel pyrazolyl-thiazole derivative induces delayed antinociception in mice. Scientific Electronic Archives, 9(4), 65–71. https://doi.org/10.36560/942016370

Edição

Seção

Ciências Biológicas

Artigos mais lidos pelo mesmo(s) autor(es)