Salinity and medicinal plants: Challenges and strategies for production

Autores

  • Paulo Henrique de Almeida Cartaxo Universidade Federal da Paraíba
  • Dayane Gomes da Silva Universidade Federal da Paraíba
  • José Rayan Eraldo Souza Araújo Universidade Federal da Paraíba
  • João Henrique Barbosa da Silva Universidade Federal da Paraíba
  • Vitor Araújo Targino Universidade Federal da Paraíba
  • Lucimere Maria da Silva Xavier Universidade Estadual da Paraíba
  • Francisco Pereira Neto Universidade Federal da Paraíba
  • Adailton Bernardo de Oliveira Universidade Federal da Paraíba
  • Adilma Maria da Silva Faculdades Nova Esperança

DOI:

https://doi.org/10.36560/15820221579

Palavras-chave:

Salt stress, Glycophytes, Tolerance induction

Resumo

Medicinal plants, since antiquity, have been relevant due to their therapeutic properties, are widely used for the prevention and treatment of diseases. However, the growth and production of these plants are impacted by a notorious environmental stressor, salinity. In this sense, this study aimed to review the impacts of salinity on plant development, the deleterious effects of this environmental stressor on the production of medicinal plants, and the production strategies of these species in saline conditions. Areas with salt excess problems have been increasing all over the planet, mainly due to human actions such as inadequate irrigation management. Salinity impacts plants at different times, the first phase results from osmotic stress, while the second derives from the ionic toxicity of the salt constituents. In medicinal plants, saline stress causes damage from germination to changes in morphological characteristics, physiology, nutrient concentration, and productivity. However, in some species, exposure to moderate degrees of salinity was positive for medicinal quality, with an improvement in the constitution of the essential oil. Strategies for the production of medicinal plants in saline conditions are reported in the literature, such as the use of amino acids (such as proline and betaine glycine), salicylic acid, arbuscular mycorrhizal fungi, resistance inducing genes, and projected nanoparticles. These strategies may represent an option for agricultural production in marginal areas and with waters with higher levels of salts.

Referências

AGHAEI, K.; KOMATSU, S. Crop and medicinal plants proteomics in response to salt stress. Frontiers in Plant Science, v. 4, p. e23386857, 2013.

AHL, S. A.; OMER, E. A. Medicinal and aromatic plants production under salt stress. A review. Herba Polonica, v. 57, n. 2, p. 73-87, 2011.

ALASVANDYARI, F.; MAHDAVI, B.; HOSSEINI, S. M. Glycine betaine affects the antioxidant system and ion accumulation and reduces salinity-induced damage in safflower seedlings. Archives of Biological Sciences, v. 69, n. 1, p. 139-147, 2017.

ALIZADEH, S.; GHARAGOZ, S. F.; POURAKBAR, L.; MOGHADDAM, S. S.; JAMALOMIDI, M. Arbuscular mycorrhizal fungi alleviate salinity stress and alter phenolic compounds of Moldavian balm. Rhizosphere, v. 19, p. e100417, 2021.

BAHCESULAR, B.; YILDIRIM, E. D.; KARAÇOCUK, M.; KULAK, M.; KARAMAN, S. Seed priming with melatonin effects on growth, essential oil compounds and antioxidant activity of basil (Ocimum basilicum L.) under salinity stress. Industrial Crops and Products, v. 146, p. e112165, 2020.

BATISTA, V. C. V.; PEREIRA, I. M. C.; PAULA-MARINHO, S. O.; CANUTO, K. M.; PEREIRA, R. D. C. A.; RODRIGUES, T. H. S. et al. Salicylic acid modulates primary and volatile metabolites to alleviate salt stress-induced photosynthesis impairment on medicinal plant Egletes viscosa. Environmental and Experimental Botany, v. 167, p. e103870, 2019.

BISTGANI, Z. E.; HASHEMI, M.; DACOSTA, M.; CRAKER, L.; MAGGI, F.; MORSHEDLOO, M. R. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products, v. 135, p. 311-320, 2019.

BUTCHER, K.; WICK, A. F.; DESUTTER, T.; CHATTERJEE, A.; HARMON, J. Soil salinity: a threat to global food security. Agronomy Journal, v. 108, n. 6, p. 2189-2200, 2016.

DALIAKOPOULOS, I. N.; TSANIS, I. K.; KOUTROULIS, A.; KOURGIALAS, N. N.; VAROUCHAKIS, A. E.; KARATZAS, G. P.; RITSEMA, C. J. The threat of soil salinity: A European scale review. Science of the Total Environment, v. 573, p. 727-739, 2016.

DAR, R. A.; SHAHNAWAZ, M.; QAZI, P. H. General overview of medicinal plants: A review. The Journal of Phytopharmacology, v. 6, n. 6, p. 349-351, 2017.

DASTOGEER, K. M.; ZAHAN, M. I.; TAHJIB-UL-ARIF, M.; AKTER, M. A.; OKAZAKI, S. Plant Salinity Tolerance Conferred by Arbuscular Mycorrhizal Fungi and Associated Mechanisms: A Meta-Analysis. Frontiers in Plant Science, v. 11, p. e1927, 2020.

EL-ESAWI, M. A.; ELANSARY, H. O.; EL-SHANHOREY, N. A.; ABDEL-HAMID, A. M.; ALI, H. M.; ELSHIKH, M. S. Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Frontiers in Physiology, v. 8, p. e716, 2017.

ELHINDI, K. M.; EL-DIN, A. S.; ELGORBAN, A. M. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi Journal of Biological Sciences, v. 24, n. 1, p. 170-179, 2017.

FITA, A.; RODRÍGUEZ-BURRUEZO, A.; BOSCAIU, M.; PROHENS, J.; VICENTE, O. Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Frontiers in Plant Science, v. 6, p. e978, 2015.

FREITAS, M. A. C.; AMORIM, A. V.; BEZERRA, A. M. E.; PEREIRA, M. S.; BESSA, M. C.; NOGUEIRA FILHO, F. P.; LACERDA, C. F. Crescimento e tolerância à salinidade em três espécies medicinais do gênero Plectranthus expostas a diferentes níveis de radiação. Revista Brasileira de Plantas Medicinais, v. 16, p. 839-849, 2014.

HASSANPOURAGHDAM, M. B.; GOHARI, G. R.; TABATABAEI, S. J.; DADPOUR, M. R.; SHIRDEL, M. NaCl salinity and Zn foliar application influence essential oil composition of basil (Ocimum basilicum L.). Acta Agriculturae Slovenica, v. 97, n. 2, p. 93-98, 2011.

HEIDARI, M.; SARANI, S. Growth, biochemical components and ion content of Chamomile (Matricaria chamomilla L.) under salinity stress and iron deficiency. Journal of the Saudi Society of Agricultural Sciences, v. 11, n. 1, p. 37-42, 2012.

HEJAZI-MEHRIZI, M.; SAADATFAR, A.; SOLTANGHEISI, A. Combined Effect of Salinity and Zinc Nutrition on Some Physiological and Biochemical Properties of Rosemary. Communications in Soil Science and Plant Analysis, v. 52, n. 22, p. 2921-2932, 2021.

HERNÁNDEZ, J. A. Salinity tolerance in plants: trends and perspectives. International Journal of Molecular Sciences, v. 20, n. 10, p. e2408, 2019.

HOKMALIPOUR, S. Effect of salinity and temperature on seed germination and seed vigor index of chicory (Chichoriumin tynus L.), cumin (Cuminium cyminium L.) and fennel (Foeniculum vulgare). Indian Journal of Science and Technology, v. 8, n. 35, p. 1-9, 2015.

HOSSAIN, M. S. Present scenario of global salt affected soils, its management and importance of salinity research. International Research Journal of Biological Sciences, v. 1, n. 1, p. 1-3, 2019.

IZADI-DARBANDI, E.; MEHDIKHANI, H. Salinity effect on some of the morphophysiological traits of three plantago species (Plantago spp.). Scientia Horticulturae, v. 236, p. 43-51, 2018.

JAMSHIDI-KIA, F.; LORIGOOINI, Z.; AMINI-KHOEI, H. Medicinal plants: Past history and future perspective. Journal of Herbmed Pharmacology, v. 7, n. 1, p. 1-7, 2018.

KAMRAN, M.; PARVEEN, A.; AHMAR, S.; MALIK, Z.; HUSSAIN, S.; CHATTHA, M. S. et al. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. International Journal of Molecular Sciences, v. 21, n. 1, p. e148, 2020.

KOTAGIRI, D.; KOLLURU, V. C. Effect of salinity stress on the morphology and physiology of five different Coleus species. Biomedical and Pharmacology Journal, v. 10, n. 4, p. 1639-1649, 2017.

LI, Y.; KONG, D.; FU, Y.; SUSSMAN, M. R.; WU, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry, v. 148, p. 80-89, 2020.

MALLAHI, T.; SAHARKHIZ, M. J.; JAVANMARDI, J. Salicylic acid changes morpho-physiological attributes of feverfew (Tanacetum parthenium L.) under salinity stress. Acta Ecologica Sinica, v. 38, n. 5, p. 351-355, 2018.

MINHAS, P. S.; RAMOS, T. B.; BEN-GAL, A.; PEREIRA, L. S. Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agricultural Water Management, v. 227, p. 105832, 2020.

MIRANSARI, M.; MAHDAVI, S.; SMITH, D. The biological approaches of altering the growth and biochemical properties of medicinal plants under salinity stress. Applied Microbiology and Biotechnology, v. 105, p. 7201–7213, 2021.

MUHAMMAD, Z.; HUSSAIN, F. Effect of NaCl salinity on the germination and seedling growth of some medicinal plants. Pakistan Journal of Botany, v. 42, n. 2, p. 889-897, 2010.

MURILLO-AMADOR, B.; CÓRDOBA-MATSON, M. V.; VILLEGAS-ESPINOZA, J. A.; HERNÁNDEZ-MONTIEL, L. G.; TROYO-DIÉGUEZ, E.; GARCÍA-HERNÁNDEZ, J. L. Mineral content and biochemical variables of Aloe vera L. under salt stress. PLoS One, v. 9, n. 4, p. e94870, 2014.

NAKHAIE, A.; HABIBI, G.; VAZIRI, A. Exogenous proline enhances salt tolerance in acclimated Aloe vera by modulating photosystem II efficiency and antioxidant defense. South African Journal of Botany, v. 15, p. 01-10, 2020.

PANTA, S.; FLOWERS, T.; LANE, P.; DOYLE, R.; HAROS, G.; SHABALA, S. Halophyte agriculture: success stories. Environmental and Experimental Botany, v. 107, p. 71-83, 2014.

QADIR, M.; QUILLÉROU, E.; NANGIA, V.; MURTAZA, G.; SINGH, M.; THOMAS, R. J.; DRECHSEL, P.; NOBLE, A. D. Economics of salt‐induced land degradation and restoration. Natural Resources Forum, v. 38, n. 4, p. 282-295. 2014.

RAHIMI-DEHGOLAN, R.; SARVESTANI, Z. T.; REZAZADEH, S. A.; DOLATABADIAN, A. Morphological and physiological characters of Aloe vera subjected to saline water irrigation. Journal of Herbs, Spices & Medicinal Plants, v. 18, n. 3, p. 222-230, 2012.

RAMEZANI, E.; SEPANLOU, M. G.; BADI, H. A. N. The effect of salinity on the growth, morphology and physiology of Echium amoenum Fisch. & Mey. African Journal of Biotechnology, v. 10, n. 44, p. 8765-8773, 2011.

RATH, K. M.; ROUSK, J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review. Soil Biology and Biochemistry, v. 81, p. 108-123, 2015.

ROMANO, B.; LUCARIELLO, G.; CAPASSO, R. Topical Collection Pharmacology of Medicinal Plants”. Biomolecules, v. 11, p. e101, 2021.

ROODBARI, N.; ROODBARI, S.; GANJALI, A.; ANSARIFAR, M. The effect of salinity stress on growth parameters and essential oil percentage of peppermint (Mentha piperita L.). International Journal of Advanced Biological and Biomedical Research, v. 1, n. 9, p. 1009-1015, 2013.

SABERALI, S. F.; MORADI, M. Effect of salinity on germination and seedling growth of Trigonella foenum-graecum, Dracocephalum moldavica, Satureja hortensis and Anethum graveolens. Journal of the Saudi Society of Agricultural Sciences, v. 18, n. 3, p. 316-323, 2019.

SHEIKHALIPOUR, M.; ESMAIELPOUR, B.; GOHARI, G.; HAGHIGHI, M.; JAFARI, H.; FARHADI, H.; KULAK, M.; KALISZ, A. Salt stress mitigation via the foliar application of chitosan-functionalized selenium and anatase titanium dioxide nanoparticles in stevia (Stevia rebaudiana Bertoni). Molecules, v. 26, n. 13, p. e4090, 2021.

SHRIVASTAVA, P.; KUMAR, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, v. 22, n. 2, p. 123-131, 2015.

WANG, W.; XU, J.; FANG, H.; LI, Z.; LI, M. Advances and challenges in medicinal plant breeding. Plant Science, v. 298, p. e110573, 2020.

WANG, Y.; WANG, M.; LI, Y.; WU, A.; HUANG, J. Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS One, v. 13, n. 4, p. e0196408, 2018.

WU, Y.; LIU, C.; KUANG, J.; GE, Q.; ZHANG, Y.; WANG, Z. Overexpression of SmLEA enhances salt and drought tolerance in Escherichia coli and Salvia miltiorrhiza. Protoplasma, v. 251, n. 5, p. 1191-1199, 2014.

YAN, K.; CUI, M.; ZHAO, S.; CHEN, X.; TANG, X. Salinity stress is beneficial to the accumulation of chlorogenic acids in honeysuckle (Lonicera japonica Thunb.). Frontiers in Plant Science, v. 7, p. e1563, 2016.

YAN, N.; MARSCHNER, P.; CAO, W.; ZUO, C.; QIN, W. Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research, v. 3, n. 4, p. 316-323, 2015.

YU, X.; LIANG, C.; CHEN, J.; QI, X.; LIU, Y.; LI, W. The effects of salinity stress on morphological characteristics, mineral nutrient accumulation and essential oil yield and composition in Mentha canadensis L. Scientia Horticulturae, v. 197, p. 579-583, 2015.

ZHAO, C.; ZHANG, H.; SONG, C.; ZHU, J. K.; SHABALA, S. Mechanisms of plant responses and adaptation to soil salinity. The Innovation, v. 1, n. 1, p. e100017, 2020.

ZÖRB, C.; GEILFUS, C. M.; DIETZ, K. J. Salinity and crop yield. Plant Biology, v. 21, p. 31-38, 2019.

Publicado

2022-07-31

Como Citar

Cartaxo, P. H. de A., Silva, D. G. da, Araújo, J. R. E. S., Barbosa da Silva, J. H., Targino, V. A., Xavier, L. M. da S., Pereira Neto, F., Oliveira, A. B. de, & Silva, A. M. da . (2022). Salinity and medicinal plants: Challenges and strategies for production. Scientific Electronic Archives, 15(8). https://doi.org/10.36560/15820221579

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >> 

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.