Resumo
Drought-induced alterations often result in plant acclimation responses, though the extent to which these traits adjust, and their true significance remain species-specific and subject to debate. In order to discern which traits exhibit plasticity and essentiality for the species' survival, we studied the morpho-physiological responses of Bauhinia cheilantha seedlings subjected to varying water regimes. We examined modifications in growth patterns, resource allocation and partitioning, morphological traits, organic solute synthesis, relative water content in leaves and roots, and the plasticity index for each trait under different water supply levels. Several traits linked to plant growth were reduced under stress, but those changes were not considered to be plastic. The concentration of organic solutes increased under stress and exhibited a reversible behavior by reducing their levels after re-irrigation. These alterations underscored the significance of such compounds for survival during water deficit periods and the high degree of adaptability. B. cheilantha exhibits morpho-physiological plasticity, as demonstrated by alternating high levels of plasticity in physiological and morphological features, which are associated with moderate drought stress. The study discusses how these changes affect the growth and survival of the species.
Referências
- Anjum, S.; Ashraf, U.; Zohaib, A.; Tanveer, M.; Naeem, M.; Ali, I.; Tabassum, T.; Nazir, U. 2017. Growth and developmental responses of crop plants under drought stress: A review. Zemdirbyste-Agriculture, 104, 267-276. https://doi.org/10.13080/z-a.2017.104.034
- Bates, L. S.; Waldren, R.P.; Teare, I. D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
- Benincasa, M. M. P. 2003. Análise de crescimento de plantas: noções básicas. FUNEP, Jaboticabal. 42p.
- Blum, A. 2017. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production: Osmotic adjustment and plant production. Plant, Cell & Environment, 40, 4-10. https://doi.org/10.1111/pce.12800
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Campos, D. A.; Andrade, E. M.; Castanho, A. D. A.; Feitosa, R. C.; Palácio, H. Q. A. 2020. Biomass Dynamics in a Fragment of Brazilian Tropical Forest (Caatinga) over Consecutive Dry Years. Applied Sciences, 10, 7813. https://doi.org/10.3390/app10217813
- Chevin, L.-M.; Hoffmann, A. A. 2017. Evolution of phenotypic plasticity in extreme environments. Phil. Trans. R. Soc., B, 372, 20160138. https://doi.org/10.1098/rstb.2016.0138
- Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. 1956. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem., 28, 350-356. https://doi.org/10.1021/ac60111a017
- Fallard, A.; Rabert, C.; Reyes-Díaz, M.; Alberdi, M.; Bravo, L. A. 2018. Compatible solutes and metabolites accumulation does not explain partial desiccation tolerance in Hymenoglossum cruentum and Hymenophyllum dentatum (Hymenophyllaceae) two filmy ferns with contrasting vertical distribution. Environmental and Experimental Botany, 150, 272-279. https://doi.org/10.1016/j.envexpbot.2018.02.002
- Feng, S.; Sikdar, A.; Wang, J.; Memon, M.; Li, B.; Ma, H., Lv, G., 2021. Response of Amorpha fruticosa seedlings to drought and rewatering in arid and semi-arid environment. Pakistani Journal of Botany, 53, 419-420. https://doi.org/10.30848/PJB2021-2(22)
- Freitas, R.S.; Silva, E.C. 2018. Respostas fisiológicas de mudas de Aspidosperma pyrifollium (Apocynaceae) à ciclos de suspensão de rega. Scientia Plena, 14, 051201. https://doi.org/10.14808/sci.plena.2018.051201
- Gao, S.; Mo, L.; Zhang, L.; Zhang, J.; Wu, J.; Wang, J.; Zhao, N.; Gao, Y. 2018. Phenotypic plasticity vs. local adaptation in quantitative traits differences of Stipa grandis in semi-arid steppe, China. Sci Rep, 8, 3148. https://doi.org/10.1038/s41598-018-21557-w
- Hare, P. D.; Cress, W. A. 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 21, 79-102. https://doi.org/10.1023/A:1005703923347
- Hasegawa, P. M.; Bressan, R. A.; Zhu, J.-K.; Bohnert, H. J. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant. Physiol. Plant. Mol. Biol., 51, 463-499. https://doi.org/10.1146/annurev.arplant.51.1.463
- Hashem, H. A.; Mohamed, A. H. 2020. Strategies for Drought Tolerance in Xerophytes. In: Hasanuzzaman, M. (Ed.), Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I. Springer Singapore, Singapore, pp. 269-293. https://doi.org/10.1007/978-981-15-2156-0_9
- Kishor, P. B. K.; Sreenivasulu, N. 2014. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ, 37, 300-311. https://doi.org/10.1111/pce.12157
- Klein, T.; Hoch, G.; Yakir, D.; Korner, C. 2014. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest. Tree Physiology, 34, 981-992. https://doi.org/10.1093/treephys/tpu071
- Lázaro-Nogal, A.; Matesanz, S.; Godoy, A.; Pérez-Trautman, F.; Gianoli, E.; Valladares, F. 2015. Environmental heterogeneity leads to higher plasticity in dry-edge populations of a semi-arid Chilean shrub: insights into climate change responses. J Ecol, 103, 338-350. https://doi.org/10.1111/1365-2745.12372
- Murren, C. J.; Auld, J. R.; Callahan, H.; Ghalambor, C. K.; Handelsman, C. A.; Heskel, M. A.; Kingsolver, J. G.; Maclean, H. J.; Masel, J.; Maughan, H.; Pfennig, D. W.; Relyea, R. A.; Seiter, S.; Snell-Rood, E.; Steiner, U. K.; Schlichting, C. D. 2015. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity, 115, 293-301. https://doi.org/10.1038/hdy.2015.8
- Oliveira, M. F. C.; Júnior, J. L. S.; Freitas, R. S.; Silva, E.C. 2021. Seedling physiological responses from Ceiba glaziovii (Kutze) K. Skum. to intermittent drought events. Journal of Biotechnology and Biodiversity, 9, 322-329. https://doi.org/10.20873/jbb.uft.cemaf.v9n4.costa
- Pereira, J. S.; Rodrigues, S. C. 2012. Crescimento de especies arboreas utilizadas na recuperacao de area degradada. Revista Caminhos de Geografia, 13, 102-110. https://doi.org/10.14393/RCG134116628
- Sánchez, F.J.; Manzanares, M.; de Andres, E. F.; Tenorio, J. L.; Ayerbe, L. 1998. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Research, 59, 225-235. https://doi.org/10.1016/S0378-4290(98)00125-7
- Santos, W. R.; Souza, L. S. B.; Pacheco, A.N.; Jardim, A. M. R. F.; Silva, T. G. F. 2021. Eficiência do Uso da Água para Espécies da Caatinga: Uma Revisão Para o Período de 2009-2019. Rev. Bras. Geog. Fis. 14, 2573. https://doi.org/10.26848/rbgf.v14.5.p2573-2591
- Santos Júnior, J. L.; Oliveira, M. F. C.; Silva, E. C. 2020. Acúmulo de solutos orgânicos em mudas de Ceiba glaziovii (Kutze) Kum. em resposta à seca intermitente. Scientia Plena, 16, 011201. https://doi.org/10.14808/sci.plena.2020.011201
- Silva, E. C.; Nogueira, R. J. M. C.; Neto, A. D. A.; Brito, J. Z.; Cabral, E. L. 2004. Aspectos ecofisiológicos de dez espécies em uma área de caatinga no município de Cabaceiras, Paraíba, Brasil. Iheringia, Série Botânica, 59, 201-206.
- Silva, E. C.; Silva, M. F. A.; Nogueira, R. J. M. C.; Albuquerque, M. B. 2010. Growth evaluation and water relations of Erythrina velutina seedlings in response to drought stress. Braz. J. Plant Physiology, 22, 225–233. https://doi.org/10.1590/S1677-04202010000400002
- Silva, E. C.; Nogueira, R. J. M. C.; Vale, F. H. A.; Araújo, F.; Pimenta, M. A. 2009. Stomatal changes induced by intermittent drought in four umbu tree genotypes. Braz. J. Plant Physiology, 21, 33-42. https://doi.org/10.1590/S1677-04202009000100005
- Turcotte, M. M.; Levine, J. M. 2016. Phenotypic Plasticity and Species Coexistence. Trends in Ecology & Evolution, 31, 803-813. https://doi.org/10.1016/j.tree.2016.07.013
- Turner, N. C. 2019. Imposing and maintaining soil water deficits in drought studies in pots. Plant Soil, 439, 45-55. https://doi.org/10.1007/s11104-018-3893-1
- Vaccaro, S.; Longhi, S. J.; Brena, D. A. 1999. Aspectos da composição florística e categorias sucessionais do estrato arbóreo de três subseres de uma Floresta Estacional Decidual, no município de Santa Tereza (RS). Ciência Florestal, 9, 1-18. https://doi.org/10.5902/19805098360
- Valladares, F.; Gianoli, E.; Gómez, J. M. 2007. Ecological limits to plant phenotypic plasticity. New Phytologist, 176, 749-763. https://doi.org/10.1111/j.1469-8137.2007.02275.x
- Vaz, A. M. S. F.; Tozzi, A. M. G. A. 2003. Bauhinia ser. Cansenia (Leguminosae: Caesalpinioideae) no Brasil. Rodriguésia, 54, 55-143. https://doi.org/10.1590/2175-78602003548305
- Via, S.; Gomulkiewicz, R.; Jong, G. D.; Scheiner, S. M.; Schlichting, C. D.; Van Tienderen, P. H. 1995. Adaptive phenotypic plasticity: consensus and controversy. Trends in Ecology & Evolution, 10, 212-217. https://doi.org/10.1016/S0169-5347(00)89061-8
- Weatherley, P. E. 1950. Studies in the water relations of the cotton plant. I. The field measuremnte of water deficits in leaves. New Phytologist, 49, 81-97. https://doi.org/10.1111/j.1469-8137.1950.tb05146.x