Ir para o conteúdo principal Ir para o menu de navegação principal Ir para o rodapé
Ciências Agrárias
Publicado: 2018-10-02

Ascophyllum nodosum seaweed extract effects in maize crop

Universidade Federal do Mato Grosso
##plugins.generic.jatsParser.article.authorBio##
×

H. D. Pereira

Eng. Agrônomo Mestre Fitotecnia UFLA Doutorando em Genética UFV
UFMT/Sinop
##plugins.generic.jatsParser.article.authorBio##
×

I. V. A. Fiorini

Eng. Agrônomo UFLA 

Mestre Fitotecnia UFLA 

Doutor Fitotecnia UFLA 

Pesquisador Associado e pós Doutorando UFMT Sinop

UFLA
##plugins.generic.jatsParser.article.authorBio##
×

R. G. Von Pinho

Professor Adjunto do Departamento de Agricultura UFLA
UFLA
##plugins.generic.jatsParser.article.authorBio##
×

F. R. Resende

Aluno Agrônomia UFLA
UFLA
##plugins.generic.jatsParser.article.authorBio##
×

E. L. Resende

Eng. Agrônomo Mestrando em Genética UFLA
UFMT/Sinop
##plugins.generic.jatsParser.article.authorBio##
×

C. S. Pereira

Eng. Agrônomo UFLA 

Mestre Fitotecnia UFLA 

Doutor fitotecnia UFLA 

Zea mays L. Biostimulant Leaf spraying Vegetative development

Resumo

Interest in natural products that increase the productive efficiency of plants together with low environmental impact is growing in agriculture. The objective of this work was to evaluate the effects of leaf spraying of a natural biostimulant extracted from the seaweed Ascophyllum nodosum on maize crop. Two experiments were set up under field conditions in the 2013/2014 crop season. The treatments: 1) control, without application of the product; 2) 300 mL ha-1 of the commercial product in the V8 stage; 3) 600 mL ha-1 of the commercial product in the V8 stage; 4) 300 mL ha-1 of the commercial product in the R1 stage; 5) 300 mL ha-1 of the commercial product in the V8 stage and repeated in the R1 stage; and 6) 600 mL ha-1 of the commercial product in the V8 stage and repeated in the R1 stage. A randomized block experimental design with four replications was used. The evaluations were: plant height 20 days after the first application for the treatments that received the product in the V8 stage, final plant height, ear height, prolificacy, and grain yield. There was no significant effect from the seaweed extract for any of the characteristics assessed.

Referências

  1. BAKY, H. H. A. E.; HUSSEIN, M. M.; EL-BAROTY, G. S. Induces of antioxidant compounds and salt tolerance in wheat plant, irrigated with sea water as response to application of microalgae spray. American Journal of Agricultural and Biological Sciences, v. 9, n. 2, p. 127-137, 2014.
  2. BLUNDEN, G.; JENKINS, T.; LIU, Y.-W. Enhanced leaf chlorophyll levels in plants treated with seaweed extract. Journal of Applied Phycology, v. 8, n.6, p. 535-543, 1997.
  3. BRITO, A. H. et al. Controle químico da Cercosporiose, Mancha-Branca e dos Grãos Ardidos em milho. Revista Ceres, Viçosa, v. 60, n.5, p. 629-635, 2013.
  4. DOURADO NETO, D. et al. Ação de bioestimulante no desempenho agronômico de milho e feijão. Bioscience Journal, v. 30, n. 3, supplement 1, p. 371-379, 2014.
  5. FAN, D. et al. Pre-harvest treatment of spinach with Ascophyllum nodosum extractimproves post-harvest storage and quality. Scientia Horticulturae, v. 170, p. 70-74, 2014.
  6. FERREIRA, L. A. et al. Bioestimulante e fertilizante associados ao tratamento de sementes de milho. Revista Brasileira de Sementes, v. 29, n. 2, p. 80-89, 2007.
  7. JANNIN, L. et al. Brassica napus Growth is Promoted by Ascophyllum nodosum (L.) Le Jol. Seaweed Extract: Microarray Analysis and Physiological Characterization of N, C, and S Metabolisms. Journal of Plant Growth Regulation, v. 32, n.1, p. 31-52, 2013.
  8. LIMA, T. G. de et al. Consequências da remoção do limbo foliar em diferentes estádios reprodutivos da cultura do milho em duas épocas de semeadura. Bragantia, Campinas, v. 69, n. 3, p. 563-570, 2010.
  9. LOLA-LUZ, T.; HENNEQUART, F.; GAFFNEY, M. Effect on health promoting phytochemicals following seaweed application, in potato and onion crops grown under a low input agricultural system. Scientia Horticulturae, v. 170, p. 224-227, 2014.
  10. NABATI, D. A. et al. Assessment of drought stress on physiology growth of Agrostis Palustris Huds. as affected by plant bioregulators and nutrientes. Asian Journal of Plant Sciences, v. 7, n. 8, p. 717-723, 2008.
  11. PEREIRA, A. M. de A. R. et al. Eficiência do modelo Ceres-Maize na simulação do desempenho de híbridos de milho. Revista Ceres, Viçosa, v. 57, n. 4, p. 486-493, 2010.
  12. PIMENTEL-GOMES, F. Curso de estatística experimental. 15ª ed., Piracicaba: FEALQ, 2009. 451p.
  13. RAYORATH, P. et al. Extracts of the Brown Seaweed Ascophyllum nodosum Induce Gibberellic Acid (GA3)-independent Amylase Activity in Barley. Journal of Plant Growth Regulation, v. 27, n. 4, p. 370-379, 2008.
  14. RITCHIE, S. W.; HANWAY, J. J.; BENSON, G. O. Como a planta de milho se desenvolve. Potafós: informações agronômica, n. 103, arquivo do agrônomo n.15, setembro de 2003.
  15. SABIR, A. et al. Vine growth, yield, berry quality attributes and leaf nutrient contentof grapevines as influenced by seaweed extract (Ascophyllumnodosum) and nanosize fertilizer pulverizations. Scientia Horticulturae, v. 175, p. 1-8, 2014.
  16. SANTOS, V. M. dos et al. Ãndices fisiológicos de plântulas de milho (Zea mays L.) sob ação de bioestimulantes. Journal of Biotechnology and Biodiversity, v.4, n.3, p. 232-239, 2013.
  17. SPANN, T. M.; LITTLE, H. A. Applications of a Commercial Extract of the Brown Seaweed Ascophyllum nodosum Increases Drought Tolerance in Container-grown ‘Hamlin’ Sweet Orange Nursery Trees. HortScience, v. 46, n. 4, p. 577-582, 2011.

Como Citar

Pereira, H. D., Fiorini, I. V. A., Von Pinho, R. G., Resende, F. R., Resende, E. L., & Pereira, C. S. (2018). Ascophyllum nodosum seaweed extract effects in maize crop. Scientific Electronic Archives, 11(5), 94–98. https://doi.org/10.36560/1152018676