Chromium in performance and metabolism of dairy cows

J. R. Assis

Resumo


The need for refined adjustments to nutritional requirements in dairy cow production systems is a demand for productive efficiency. Dairy cows face severe physiological and metabolic changes as the end of pregnancy and the beginning of lactation, requiring greater attention in nutritional aspects. However, chromium supplementation has been suggested to improve the metabolism of carbohydrates, lipids and proteins. Thus giving potential use for dairy cows. In this context, the objective was to conduct a literature review on the effects of chromium supplementation on the productive performance and metabolism of dairy cows. Therefore, chromium supplementation appears to improve milk production without affecting milk constituents. And apparently chromium supplementation reduces the blood concentration of NEFA. These results can be explained by a possible improvement in insulin metabolism, promoting an increase in insulin sensitivity in adipose tissue, consequently reducing lipolysis. What can change the energy partition in the mammary gland improving the processes of milk synthesis. However, many experimental results are contradictory in the literature, which can be explained by different stages of lactation, chromium source, stress conditions, supplementation period, type and content of carbohydrates in the diet. So in fact, there is a need to conduct a meta-analysis study with the available database to elucidate the real effect of chromium on the performance and metabolism of dairy cows.


Palavras-chave


Micromineral; Insulin sensitivity; Milk production

Texto completo:

PDF (English)

Referências


AL-SAIADY, M. Y.; AL-SHAIKH, M. A.; AL-MUFARREJ, SI.; AL-SHOWEIMI, T. A.; MOGAWER, H. H.; DIRRAR, A. Effect of chelated chromium supplementation on lactation performance and blood parameters of Holstein cows under heat stress. Anim Feed Sci Technol. 117:223–233, 2004. https://doi.org/10. 1016/j.anifeedsci.2004.07.008

AN-QIANG, L.; ZHI-SHENG, W.; AN-GUO, Z. Effect of Chromium Picolinate Supplementation on Early Lactation Performance. Rectal Temperatures. Respiration Rates and Plasma Biochemical Response of Holstein Cows under Heat Stress. Pakistan Journal of Nutrition. 8:940-945, 2009.

AMATA, I. A. Chromium in Livestock Nutrition: A Review. G A R J Agri Sci. 2:289-306, 2013.

BAILEY, C. H. Improved meta–analytic methods show no effect of chromium supplements on fasting glucose. Biol Trace Elem Res 157:1–8, 2014. https://doi.org/10.1007/s12011-013-9863-9

BOREL, J. S.; ANDERSON, R. A. Chromium. In: Frieden E (ed) Biochemistry of the essential ultratrace elements. Plenum Press, New York, NY. 175–199, 1984.

BRYAN, M. A.; SOCHA, M. T.; TOMLINSON, D. J. Supplementing intensively grazed late-gestation and arly-lactation dairy cattle with chromium. J Dairy Sci. 87:4269–4277, 2004. https://doi.org/10.3168/jds.S0022-0302(04)73571-7

DAVIS, C. M.; SUMRALL, K. H.; VINCENT, J. B. A biologically active form of chromium may activate a membrane phosphotyrosine phosphatase (PTP). Biochemistry. 35:12963–12969, 1996. https://doi.org/10.1021/bi960328y

DAVIS, C. M.; VINCENT, J. B. Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry. 36:4382–4395, 1997. https://doi.org/10.1021/bi963154t

DUCROS, V. Chromiummetabolism. Biol Trace Elem. Res. 32:65–77, 1992. https://doi.org/10.1007/BF02784589

FORBES, R. M.; ERDMAN, J. J. W. Bioavailability of trace mineral elements. Ann Rev Nutr. 3:213–231, 1983. https://doi.org/10.1146/annurev.nu.03.070183.001241

GÄBEL, G.; MARTENS, H.; SUENDERMANN, M.; GALFI P. The effect of diet, intraruminal pH and osmolarity on sodium, chloride and magnesium absorption from the temporarily isolated and washed reticulo-rumen of sheep. Exp Physiol. 72:501–511, 1987. https://doi.org/10.1113/expphysiol.1987.sp003092

GENTRY, L. R.; FERNANDEZ, J. M.; WARD, T. L.; WHITE, T. W.; SOUTHERN, L. L.; BIDNER, T. D.; THOMPSON, D. L.; HOROHOV, D. W.; CHAPA, A. M.; SAHLU, T. Dietary protein and chromium tripicolinate in Suffolk wether lambs: effects on production characteristics, metabolic and hormonal responses, and immune status. J Anim Sci. Vol. 77, p. 1284–1294, 1999. https://doi.org/10.2527/1999.7751284x

GULTEPE, E. E.; UYARLAR, C.; BAYRAM, I. Supplementation of Cr Methionine during dry period of dairy cows and its effect on some production and biochemical parameters during early lactation and on immunity of their offspring. Biological Trace Element Research. 186:143-153, 2018. https://doi.org/10.1007/s12011-018-1279-0

HANG, F. J.; WENG, X. G.; WANG, J. F.; ZHOU, D.; ZHANG, W.; ZHAI, C. C.; HOU, Y. X.; ZHU, Y. H. Effects of temperature–humidity index and chromium supplementation on antioxidant capacity, heat shock protein 72, and cytokine responses of lactating cows. J Anim Sci. 92:3026–3034, 2014. https://doi.org/10. 2527/jas.2013-6932

HAYIRLI, A.; BREMMER, D. R.; BERTICS, S. J.; SOCHA, M. T.; GRUMMER, R. R. Effect of chromium supplementation on production and metabolic parameters in periparturient dairy cows. J Dairy Sci. 84:1218–1230, 2001. https://doi.org/10.3168/jds.S0022-0302(01)74583-3

JEEJEBHOY, K. N.; CHU, R. C.; MARLISS, E. B.; GREENBERG, G. R.; BRUCE-ROBERTSON, A. Chromium deficiency, glucose intolerance and neuropathy reversed by chromium supplementation in a patient receiving long-term total parental nutrition. Ame. J. Clinical Nutrition, 30:531-538, 1977. https://doi.org/10.1093/ajcn/30.4.531

KAFILZADEH, F.; SHABANKAREH, H. K.; TARGHIBI, M. R. Effect of chromium supplementation on productive and reproductive performances and some metabolic parameters in late gestation and early lactation of dairy cows. Biol Trace Elem Res. 149:42– 49, 2012. https://doi.org/10. 1007/s12011-012-9390-0

KHAN, N.; CHOI, J. Y.; NHO, E. Y.; JAMILA, N.; HABTE, G.; HONG, J. H.; HWANG, I. M.; KIM, K. S. Determination of minor and trace elements in aromatic spices by micro–wave assisted digestion and inductively coupled plasma-mass spectrometry. Food Chem. 158:200–206, 2014. https://doi.org/10.1016/j.foodchem.2014.02.103

LEIVA, T.; COOKE, R. F.; BRANDÃO, A. P.; ABOIN, A. C.; RANCHES, J.; VASCONCELOS, J. L. Effects of excessive energy intake and supplementation with chromium propionate on insulin resistance parameters, milk production, and reproductive outcomes of lactating dairy cows. Livest Sci. 180:121–128, 2015. https://doi.org/10. 1016/j.livsci.2015.08.007

LINDEMANN, M. D. Organic Chromium – the missing link in farm animal nutrition? Feeding Times, 1:8-16, 1996.

LUKASKI, H. C. Chromium as a supplement. Ann Rev Nutr. 19:279–302, 1999. https://doi.org/10.1146/annurev.nutr.19.1.279

MCNAMARA, J. P.; VALDEZ, F. Adipose tissue metabolism and production responses to calcium propionate and chromium propionate. J Dairy Sci. 88:2498–2507, 2005. https://doi.org/10.3168/jds.S0022-0302(05)72927-1

MERTZ, W. Chromium in human nutrition: a review. J Nutr. 123:626, 1993.

MOUSAIE, A.; VALIZADEH, R.; NASERIAN, A. A.; HEIDARPOUR, M.; MEHRJERDI, H. K. Impacts of feeding selenium-methionine and chromium-methionine on performance, serum components, antioxidant status, and physiological responses to transportation stress of Baluchi ewe lambs. Biol Trace Elem Res. 162:113–123, 2014. https://doi.org/10.1007/s12011-014-0162-x

NIKKHAH, A.; MIRZAEI, M.; GHORBANI, G. R.; KHORVASH, M.; RAHMANI, H. R. Chromium improves production and alters metabolism of early lactation cows in summer. J AnimPhysiol AnimNutr. 95:81–89, 2001. https://doi.org/10. /j.1439-0396.2010.01007.x

NRC, NUTRIENT REQUIREMENTS OF DAIRY CATTLE, 7th edn. National Academy Press, Washington, DC, 2001.

PECHOVA, A.; PAVLATA, L. Chromium as an essential nutrient: a review. Vet Med. 52:1–18, 2007.

RANHOTRA, G. S.; GELROTH, J. A. Effects of high chromium baker’s yeast on glucose tolerance and blood lipids in rats. Cereal Chem. 63:411–413, 1986.

SANO, H.; NAKAI, M.; KONDO, T.; TERASHIMA, Y. Insulin responsiveness to glucose and tissue responsiveness to insulin in lactating, pregnant, and nonpregnant, nonlactating beef cows. J Anim Sci. 69:1122–1127, 1991. https://doi.org/10.2527/1991.6931122x

SCHWARZ, K.; MERTZ, Z. Chromium (III) and glucose tolerance factor. Arch. Biochem. Biophysics. 85: 292-295, 1959.

SMITH, K. L.; WALDRON, M. R.; RUZZI, L. C.; DRACKLEY, J. K.; SOCHA, M. T.; OVERTON, T. R. Metabolism of dairy cows as affected by prepartum dietary carbohydrate source and supplementation with chromium throughout the periparturient period. J Dairy Sci. 91: 2011–2020, 2008. https://doi.org/10.3168/jds.2007-0696

SMITH, K. L.; WALDRON, M. R.; DRACKLEY, J. K.; SOCHA, M. T.; OVERTON, T. R. Performance of dairy cows as affected by prepartum dietary carbohydrate source and supplementation with chromium throughout the transition period. J Dairy Sci. 88:255–263, 2005. https://doi.org/10.3168/jds.S0022-0302(05)72683-7

SOLTAN, M. A. Effect of dietary chromium supplementation on productive and reproductive performance of early lactating dairy cows under heat stress. J Anim Physiol Anim Nutr. 94:264–272, 2010. https://doi.org/10. 1111/j.1439-0396.2008.00913.x

STOECKER, B. J. Chromium absorption, safety, and toxicity. J Trace Elem Exp Med. 12:163–169, 1999. https://doi.org/10.1002/(SICI)1520670X(1999)12:2<163::AIDJTRA13>3.0.CO,2-3

SUMNER, J. M.; VALDEZ, F.; MCNAMARA, J. P. Effects of chromium propionate on response to an intravenous glucose tolerance test in growing Holstein heifers. J Dairy Sci. 90:3467–3474, 2007. https://doi.org/10. 3168/jds.2006-623

VARGAS-RODRIGUEZ, C. F.; YUAN, K.; TITGEMEYER, E. C.; MAMEDOVA, L. K.; GRISWOLD, K. E.; BRADFORD B. J. Effects of supplemental chromium propionate and rumen-protected amino acids on productivity, diet digestibility, and energy balance of peak-lactation dairy cattle. J Dairy Sci. 97:3815–3821, 2014. https://doi.org/10. 3168/jds. 2013-7767

VINCENT, J.B. The bioinorganic chemistry of chromium (III). Polyhedron 20:1-26, 2001. https://doi.org/10.1016/S0277-5387(00)00624-0

VINCENT, J. B. The biochemistry of chromium. J Nutr. 130:715–718, 2000. https://doi.org/10.1093/jn/130.4.715

VINCENT, J. B. Recent advances in the nutritional biochemistry of trivalent chromium. Proc. Nutr. Soc. 63:41–47, 2004. https://doi.org/10.1079/PNS2003315

YAMAMOTO, A.; WADA, O.; ONO, T. Isolation of a biologically active low-molecular-mass chromium compound from rabbit liver. FEBS J. 165:627–631, 1987. https://doi.org/10.1111/j.1432-1033.1987.tb11486.x

YANG, W. Z.; MOWAT, D. N.; SUBIYATNO, A.; LIPTRAP R. M. Effects of chromium supplementation on early lactation performance of Holstein cows. Can J Anim Sci. 76:221–230, 1996. https://doi.org/10.4141/cjas96-034

YASUI, T.; MCART, J. A.; RYAN, C. M.; GILBERT, R. O., NYDAM, D. V.; VALDEZ, F.; GRISWOLD, K. E.; OVERTON, T. R. Effects of chromium propionate supplementation during the periparturient period and early lactation on metabolism, performance, and cytological endometritis in dairy cows. J Dairy Sci. 97:6400–6410, 2014. https://doi.org/10.3168/jds.2013-7796

YUAN, K.; VARGAS-RODRIGUEZ, C. F.; MAMEDOVA, L. K.; MUCKEY, M. B., VAUGHN, M. A.; BURNETT, D. D.; GONZALEZ, J. M.; TITGEMEYER, E. C.; GRISWOLD, K. E.; BRADFORD, B. J. Effects of supplemental chromium propionate and rumen-protected amino acids on nutrient metabolism, neutrophil activation, and adipocyte size in dairy cows during peak lactation. J Dairy Sci. 97:3822–3831, 2014. https://doi.org/10.3168/jds.2013-7770




DOI: http://dx.doi.org/10.36560/14120211280

Apontamentos

  • Não há apontamentos.


Apoio:
Endereço: 
Universidade Federal de Rondonópolis
Avenida dos Estudantes, 5055 - Cidade Universitária
Rondonópolis - MT, 78735-901