Biocontrol of anthracnose on yellow passion fruits by antagonic bacteria to plant pathogens

C. C. Bulhões, I. S. Melo, H. F. Shiomi

Resumo


In this study was evaluated the efficacy of the bacterial strains: BB-4 (Bacillus cereus GC, subgroup B), BS-2 (Photorhabdus luminescens), BB- 1 (Bacillus alcalophilus), BS-5 (B. cereus GC, subgroup B), BB-5 (Stenotrophomonas maltophilia), BB-6 (Yersinia bercovieri) and BS-6 (P. luminescens) on the control of anthracnose in yellow passion fruit, on antagonism tests and fruits tests under laboratory conditions. The plant pathogen was grown in Petri dishes containing BDA medium for 15 days and the bacterial strains were multiplied in AN medium for two days at 28°C. In passion fruits test, a wound was performed at a depth of 2 mm, followed by spraying with a suspension containing a bacterial antagonist strain (108 cfu. mL-1). On the wound, a BDA disc with 4 mm in diameter completely colonized by the pathogen and maintenance for 7 days (25ºC, high RU% and 12 hours of photoperiod) until the evaluation of diameter of lesions. The experimental design adopted was the completely randomized (9 treatments and 4 replications). The data were submitted to variance analysis and Tukey test (5%). In antagonism test, only BS-5 (B. cereus GC, Subgroup B) and BS-2 (P. luminescens) strains did not inhibit the mycelial growth of the pathogen. The other strains were efficient in inhibition, with levels ranging from 35% to 53%, highlighting the strains BB-4 (B. cereus GC. Sub group B), BS-3 (P. luminescens) and BB-4 (S. maltophilia), with 52.5%, 52.5% and 53.3% of control, respectively. In the fruit test, BS-2 (P. luminescens), BS-5 (B. cereus GC, Subgroup B), BB-1 (B. alcalophilus), BS-3 (P. luminescens) and BB-6 (Y. bercovieri) inhibited the development of the pathogen, with control levels varying between 23.4% and 43.6%, with emphasis on BB-1 (B. alcalophilus) and BS-3 (P. luminescens), with 43.6% of control, indicating potential of use on the biocontrol of anthracnose on passion fruits.


Palavras-chave


passion fruit, biological control, alternative control

Texto completo:

PDF

Referências


ARKHIPCHENKO, I.A.; SALKINOJA-SALONEN, M.S.; KARYAKINA, J.N.; TSITKO, I. Study of three fertilizers produced from farm waste. Applied Soil Ecology 30: 126-132, 2005.

BATH, R.; PALIYATH, G. Fruits of Tropical Climates: Dietary Importance and Health Benefits. Encyclopedia of Food and Health, 144-149, 2016.

BETTIOL, W. Controle de doenças de plantas com agentes de controle biológico e outras tecnologias.

In: CAMPANHOLA, C; BETTIOL, W. (Eds.). Métodos alternativos de controle fitossanitário, Embrapa, Jaguariúna, Brasil. p.191-215, 2003.

BOWEN, D.; BLACKBURN, M.; ROCHELEAU, T.; GRUTZMACHER, R.H.; FFRENCH-CONSTANT, R.H. Secreted proteases from Photorhabdus luminescens: separation of the extracellular proteases from insecticidal Tc toxin complexes. Insect Biochemistry and Molecular Biology 30: 69-74, 2000.

CANNON, P.F.; DAMM, U.; WEIR, B.S. Colletotrichum – Current status and future directions. Studies in Mycology 73: 181-213, 2012.

CARNIEL, E. The Yersinia high-pathogenicity island: an iron-uptake island. Microbes and Infection 3: 561-569, 2001.

CHEN, G.; DUNPHY, G.B.; WEBSTER, J.M. Antifungal activity of two Xenorhabdus species and Photorhabdus luminescens, bacteria associated with the nematodes Steinernema species and Heterorhabditis megidis. Biological Control 4: 157-162, 1994.

CHEN, G.; ZHANG, Y.; LI, J.; DUNPHY, G.B.; PUNJA, Z.K.; WEBSTER, J.M. Chitinase activity of Xenorhabdus and Photorhabdus species, bacterial associates and entomopathogenic nematodes. Journal of Invertebrate Pathology 68: 101-108, 1996.

COLLARD, F. H.; ALMEIDA, A.; COSTA, M. C. R.; ROCHA, M. C. Efeito do uso de biofertilizante agrobio na cultura do maracujazeiro amarelo (Passiflora edulis f. flavicarpa Deg). Revista Biociências v.7, n.1, p.15-21. 2001.

DHAWAN, K.; DHAWAN, S.; SHARMA, A. Passiflora: a review update. Journal of Ethnopharmacology 94: 1-23, 2004.

DEREDJIAN, A.; ALLIOT, N.; BLANCHARD, L.; BROTHIER, E.; ANANE, M.; CAMBIER, P.; JOLIVET, C.; KHELIL, M.N.; NAZARET, S.; SABY, N.; THIOULOUSE, J.; FAVRE-BONTÉ, S. Occurrence of Stenotrophomonas maltophilia in agricultural soils and antibiotic resistance properties. Research in Microbiology 167: 313-324, 2016.

FALCÃO, J.P. Yersinia, Encyclopedia of Food Microbiology 3: 2342-2350, 2014.

FFRENCH-CONSTANT, R.H.; DOWLING, A.; WATERFIELD, N.R. Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49: 436-451, 2007.

FISCHER, I.H.; KIMATI, H.; REZENDE, J.A.M. Doenças do maracujazeiro. In: KIMATI, H.; AMORIM, L.; REZENDE, J.A.M.; BERGAMIN FILHO, A.; CAMARGO, L.E.A. (Eds.) Manual de Fitopatologia Agronômica Ceres: São Paulo, Brasil, 4 ed., v.2, 2005. p.467-474.

KIM, Y.; PARK, J.; SEO, K. Presence of Stenotrophomonas maltophilia exhibiting high genetic similarity to clinical isolates in final effluents of farm wastewater treatment plants. International Journal of Hygiene and Environmental Health 221: 300-307, 2018.

KUNOH, H. Endophytic actinomycetes: attractive biocontrol agents. Journal of General Plant Pathology 68: 249-252, 2002.

KUPPER, K.C.; BELLOTTE, J.A.M.; GÓES, A. Controle alternativo de Colletotrichum acutatum, agente causal da queda prematura dos frutos cítricos. Revista Brasileira de Fruticultura, v.31, n.4, p.1004-1015, 2009.

JANKIEWICZ, U.; BRZEZINSKA, M.S.; SAKS, E. Identification and characterization of a chitinase of Stenotrophomonas maltophilia, a bacterium that is antagonistic towards fungal phytopathogens. Journal of Bioscience and Bioengineering, v.113, n.1, p.30-35, 2012.

JANKIEWICZ, U.; LARKOWSKA, E.; BRZEZINSKA, M.S. Production, characterization, gene cloning, and nematocidal activity of extracellular protease from Stenotrophomonas maltophilia N4. Journal of Bioscience and Bioengineering, v.121, n.6, p.614-618, 2016.

LE GUERN, A.S.; MARTIN, L.; SAVIN, C.; CARNIEL, E. Yersiniosis in France: overview and potential sources of infection. International Journal of Infectious Diseases 46: 1-7, 2016.

MARROCOS, S.T.P.; NOVO JUNIOR, J.; GRANGEIRO, L.C.; AMBRÓSIO, M.M.Q.; CUNHA, A.P.A. Composição química e microbiológica de biofertilizantes em diferentes tempos de decomposição. Revista Caatinga, v.25, n.4, p.34-43, 2012.

MARTINEZ, C.; MICHAUD, M.; BELANGER, R. R.; TWEDDELL, R. J. Identification of soils suppressive against Helminthosporium solani, the causal agent of potato silver scurf. Soil Biology and Biochemistry, v.34, n.12, p.1861-1868, 2002.

MEDEIROS, M.B.; LOPES, J.S. Biofertilizantes líquidos e sustentabilidade agrícola. Bahia Agrícola, v.7, n.3, p.24-26, 2006.

MOHAMED, C.; NAJLA, S.; OUELLETTE, G. B. Ultrastructure of in vivo interactions of the antagonistic bacteria Bacillus cereus X16 and B. thuringiensis55T with Fusarium roseum var. sambucinum, the causal agent of potato dry rot. Phytopathologia Mediterranea, v.42, n.1, p.41-54, 2003.

MUHAMMAD, S.; AMUSA, N. A. In vitro inhibition of growth of some seedling blight inducing pathogens by compost-inhabiting microbes. African Journal of Biotechnology, v.2, n.6, p.161-164, 2003.

NOBLE, R.; E. COVENTRY, E. Suppression of soil-borne plant diseases with composts: a review. Biocontrol Science and Technolology, 5: 3-20, 2005.

OLIVEIRA, D.A.; ANGONESE, M.; GOMES, C.; FERREIRA, S.R.S. Valorization of passion fruit (Passiflora edulis sp.) by products: Sustainable recovery and biological activities. The Journal of Supercritical Fluids 111: 55-62, 2016.

ROJAS-SOLÍS, D.; ZETTER-SALMÓN, E.; CONTRERA-PÉREZ, M.; ROCHA-GRANADOS, M.C.; MACÍAS-RODRÍGUEZ, L.; SANTOYO, G. Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatalysis and Agricultural Biotechnology 13: 46-52, 2018.

SHAPIRO-ILAN, D.I.; BOCK, C.H.; HOTCHKISS, M.W. Suppression of pecan and peach pathogens on different substrates using Xenorhabdus bovierii and Photorhabdus luminescens. Biological Control 77: 1-6, 2014.

SHIOMI, H.F.; MELO, I.S.; MINHONI, M.T.A. Seleção de bactérias endofíticas com ação antagônica a fitopatógenos. Scientia Agraria, v.9, n.4, p.535-538, 2008.

SHIOMI, H. F.; SILVA, H. S. A.; MELO, I. S.; NUNES, F. V.; BETTIOL, W. Bioprospecting endophytic bacteria for biological control of coffee leaf rust. Scientia Agricola, v. 63, n. 1, p. 32-39, 2006.

SIGRIST, J. M. M. In: SANTOS FILHO, H. P.; JUNQUEIRA, N. T. V. (Ed.) Maracujá: Fitossanidade. Brasília: Embrapa Informação Tecnológica, 2003. p. 20-31.

SILVA, H. S. A.; ROMEIRO, R. S.; MACAGNAN, D.; HALFELD-VIEIRA, B. A.; PEREIRA, M. C. B.; MOUNTEER, A. Rhizobacterial induction of systemic resistance in tomato plants: non-specific protection and enzyme activities. Biological Control 29: 288-295, 2004.

SILVA, A.F.; PINTO, J.M.; FRANÇA, C.R.R.S; FERNANDES, S.C.; GOMES, T.C.A.; SILVA, M.S.L.; MATOS, A.N.B. Preparo e uso de biofertilizantes líquidos, 1 ed., CPATSA-EMBRAPA: Petrolina, Brasil. 2007. (Comunicado Técnico 130).

SINGH, J.; FAULL, J.L. Antagonism and biological control. In: MUKERJI, K.G.; GARG, K.L. (Eds.) Biological Control of Plant Diseases, v.2. CRC Press: Boca Raton, FL., 1988. p.167-177.

SUMA, K.; PODILE, A.R. Chitinase A from Stenotrophomonas maltophilia shows transglycosylation and antifungal activities. Bioresourse Technology 133: 213-220, 2013.

TRATCH, R.; BETTIOL, W. Efeito de biofertilizantes sobre o crescimento micelial e germinação de esporos de alguns fungos fitopatogênicos. Pesquisa Agropecuária Brasileira, v.32, n.11, p.1131-1139, 1997.

VAN LOON, L.C.; BAKKER, P.A.H.M.; PIETERSE, C.M.J. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36: 453-483, 1998.

WIJERATNAM, S.W. Passion Fruit. Encyclopedia of Food and Health, p.230-234, 2016.

ZHANG, W.; DICK, W.A.; HOITINK, H.A.J. Compost-induced systemic acquired resistance in




DOI: http://dx.doi.org/10.36560/1242019733

Apontamentos

  • Não há apontamentos.


Apoio:
Endereço: 
Universidade Federal de Rondonópolis
Avenida dos Estudantes, 5055 - Cidade Universitária
Rondonópolis - MT, 78735-901