Ir para o conteúdo principal Ir para o menu de navegação principal Ir para o rodapé
Ciências Agrárias
Publicado: 2020-11-30

Toxicity and effects of combined agrochemical in Scaptotrigona bipunctata bees

Universidade Estadual de Maringá – Departamento de Biotecnologia, Genética e Biologia Celular
##plugins.generic.jatsParser.article.authorBio##
×

T. O. Diniz

Universidade Estadual de Maringá – Departamento de Biotecnologia, Genética e Biologia Celular
Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
Departamento de Ciências Exatas, Escola Superior de Agricultura “Luiz de Queiroz” – ESALQ/USP, Piracicaba, São Paulo, Brasil
Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
Histology SEM CEC stingless bees

Resumo

The commercial insecticide Fastac Duo is a combined insecticide, widely used in different crops, acting on insects, affecting both pests and pollinators, such as bees. In this study, the effects of sublethal concentrations of Fastac Duo in stingless bees Scaptotrigona bipunctata were evaluated. Worker forager bees were exposed to the insecticide and histochemical and morphological analyses were conducted after 24, 48 and 72 h of ingestion. Brain analysis of S. bipunctata revealed changes in the chromatin condensing state according to exposure time and insecticide concentration when compared to the control group. Morphological changes were observed in the midgut in all concentrations and exposure times, which may interfere in several physiological processes. In conclusion, although the concentrations used in the study did not cause high mortality, it induced changes in the internal morphology that can lead to changes in bee activity.

Referências

  1. ADAPAR. Agência de Defesa Agropecuária do Paraná. 2018. Disponível em: http://www.adapar.pr.gov.br/. Acesso em: 13 de março de 2020.
  2. ARENA, M.; SGOLASTRA, F. A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology, 23: 324–334, 2014. doi: 10.1007 / s10646-014-1190-1
  3. BARBOSA, D.B.; CRUPINSKI, E.F.; SILVEIRA, R.N.; LIMBERGER, D.C.H. As abelhas e seu serviço ecossistêmico de polinização. Revista Eletrônica Científica da UERGS, 3:694-703, 2017. doi: 10.21674/2448-0479.34.694-703
  4. BRIDI, R.; LARENA, A.; PIZARRO, P. N.; GIORDANO, A.; MONTENEGRO, G. LC-MS/MS analysis of neonicotinoid insecticides: Residue findings in Chilean honeys. Ciência e Agroecologia, 42:51-57, 2018. doi: 10.1590/1413-70542018421021117
  5. CAMARGO, J.M.F.; PEDRO, S.R.M. Meliponini Lepeletier, 1836. In: MOURE, J.S.; URBAN, D. eds. Melo GAR (Orgs) Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region. Curitiba, Brazil: UFPR; Online Version 2013. Disponível em: http://www.moure.cria.org.br/catalogue. Acesso em: 13, janeiro, 2020.
  6. CATAE, A.F.; ROAT, T.C.; OLIVEIRA, R.A.; NOCELLI, R.C.F.; MALASPINA, O. Cytotoxic effects of thiamethoxam in the midgut and malpighian tubules of Africanized Apis mellifera (Hymenoptera: Apidae). Microscopy Research & Technique, 77: 274–281, 2014 doi: 10.1002/jemt.22339
  7. DINIZ, T.O.; PEREIRA, N.C.; PIZZAIA, W.C.S.; SINÓPOLIS-GIGLIOLLI, A.A.; SILVA, B.G.; BORGES, Y.M.; GUEDES, T.A.; RUVOLO-TAKASUSUSKI, M.C.C. Toxicity and genetic analysis of bees Scaptotrigona bipunctata after contamination with insecticide acephate. Scientific Electronic Archives, 13: 8–17, 2020. doi: 10.36560/ 13820201157
  8. FALCO, J.R.P.; HASHIMOTO, J.H.; FERMINO, F.; TOLEDO, V.A.A. Toxicity of thiamethoxam, behavioral effects and alterations in chromatin of Apis mellifera L, 1758 (Hymenoptera; Apidae). Research Journal of Agriculture and Biological Sciences, 6:823–828, 2010.
  9. FARIA, A.B.C. Revisão sobre alguns grupos de inseticidas utilizados no manejo integrado de pragas florestais. Ambiência, 5: 345–357, 2006.
  10. FREITAS, B.M.; PINHEIRO, J.N. Efeitos sub-letais dos pesticidas agrícolas e seus impactos no manejo de polinizadores dos agroecossistemas brasileiros. Oecologia Australis, 14:282-298, 2010. doi: 10.4257/oeco.2010.1401.17
  11. LANDIM, C.C. Abelhas: morfologia e função de sistemas. São Paulo, Brazil: UNESP, 2009. 408p.
  12. MORAES, S.S.; BATISTA, A.R.; VIANA, B.F. Avaliação da toxicidade aguda (DL50 e CL50) de inseticidas para Scaptotrigona tubiba (Smith) (Hymenoptera: Apidae): via de contato. Anais da Sociedade Entomológica do Brasil, 29:31–37, 2000. doi: 10.1590/S0301-80592000000100004
  13. MOREIRA, D.R.; SINÓPOLIS-GIGLIOLLI, A.A.; FALCO, J.R.P.; FERREIRA-JÚLIO, A.H.; VOLNISTEM, E.A.; CHAGAS, F.; TOLEDO, V.A.A.; RUVOLO-TAKASUSUKI, M.C.C. Toxicity and effects of the neonicotinoid thiamethoxam on Scaptotrigona bipunctata lepeletier, 1836 (Hymenoptera: Apidae). Environmental Toxicology, 33:463–475, 2018. doi: 10.1002 / tox.22533
  14. OLIVEIRA, R.A.; ROAT, T.C.; CARVALHO, S.M.; MALASPINA, O. Side-effects of thiamethoxam on the brain and midgut of the africanized honeybee Apis mellifera (Hymenopptera: Apidae). Environmental Toxicology, 29:1122–1133, 2014. doi: 10.1002 / tox.21842
  15. PACÃFICO-DA-SILVA, I.; MELO, M.M.; SOTO-BLANCO, B. Efeitos tóxicos dos praguicidas para abelhas. Revista Brasileira de Higiene e Sanidade Animal, 10: 142–157, 2016 doi: 10.5935/1981-2965.20160013
  16. PEREIRA, N.C. Toxicidade e análise genética de abelhas Scaptotrigona bipunctata Lepeletier, 1836 (Hymenoptera, Meliponini) contaminadas com inseticida cipermetrina. Maringá: Universidade Estadual de Maringá, 2017. 52 f. Dissertação (Mestrado em Genética e Melhoramento).
  17. RAMÃREZ, V.M.; AYALA, R.; GONZÃLEZ, H.D. In: VIT, P.; PEDRO, S.; ROUBIK, D. (eds) Pot-Pollen in Stingless Bee Melittology. Springer, 139-153, 2018.
  18. R DEVELOPMENT CORE TEAM. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, Vienna, 2019.
  19. ROAT, T.C.; CARVALHO, S.M.; NOVELLI, R.C.F.; SILVA-ZACARIN, E.C.M.; OALMA, M.S.; MALASPINA, O. Effects of sublethal dose of fipronil on neuron metabolic activity of africanized honeybees. Archives of Environmental Contamination and Toxicology, 64: 456–466, 2013. doi: 10.1007/s00244-012-9849-1
  20. ROSSI, C.A.; ROAT, T.C.; TAVARES, D.A.; CINTRA-SOCOLOWSKI, P.; MALASPINA, O. Effects of sublethal doses of imidacloprid in malpighian tubules of africanized Apis mellifera (Hymenoptera, Apidae). Microscopy Research and Technique, 76:552–558, 2013. doi: 10.1002/jemt.22199
  21. SANCHEZ-BAYO, F.; GOKA, K. Pesticide residues and bees – A risk assessment. PLoS ONE, 9:e94482, 2014. doi: 10.1371/journal.pone.0094482
  22. SANTOS, M.A.T.; AREAS, M.A.; REYES, F.G. Piretroides – uma visão geral. Alimentos e Nutrição, 18:339-349, 2007.
  23. SANTOS, S.A.; FERMINO, F.; MOREIRA, B.M.T.; ARAUJO, K.F.; FALCO, J.R.P.; RUVOLO-TAKASUSUKI, M.C.C. Critical electrolyte concentration of silk gland chromatin of the sugarcane borer Diatraea saccharalis, induced using agrochemicals. Genetics and Molecular Research, 13:7958–7964, 2014. doi: 10.4238 / 2014.Setembro 29.9
  24. SOARES, H.M.; JACOB, C.R.O; CARVALHO, S.M.; NOCELLI, R.C.; MALASPINA, O. Toxicity of imidacloprid to the stingless bee Scaptotrigona postica Latreille,1807 (Hymenoptera: Apidae). Bulletin of Environmental Contamination and Toxicology, 94:675–680, 2015. doi: 10.1007 / s00128-015-1488-6
  25. TAVARES, D.A.; ROAT, T.C.; CARVALHO, S.M.; SILVA-ZACARIN, E.C.M.; MALASPINA; O. In vitro effects of thiamethoxam on larvae of Africanized honey bee Apis mellifera (Hymenoptera: Apidae). Chemosphere,135:370–378, 2015. doi: 10.1016 / j.chemosphere.2015.04.090
  26. THANY, S.H.; BOURDIN, C.M.; GRATON, J.; LAURENT, A.D.; MATHÉ-ALLAINMAT, M.; LEBRETON, J.; QUESTEL, J.Y.L. Similar Comparative Low and High Doses of Deltamethrin and Acetamiprid Differently Impair the Retrieval of the Proboscis Extension Reflex in the Forager Honey Bee (Apis mellifera). Insects, 6:805-814, 2015. doi: 10.3390 / insects6040805
  27. TISON, L.; HAHN, M.L.; HOLTZ, S.; RÖßNER, A.; GREGGERS, U.; BISCHOFF, G.; MENZEL, R. Honey Bees’ Behavior Is Impaired by Chronic Exposure to the Neonicotinoid Thiacloprid in the Field. Environmental Science & Technology, 50:7218-7227, 2016. doi: 10.1021 / acs.est.6b02658
  28. TOMÉ, H.V.V.; BARBOSA, W.F.; CORRÊA, A.S.; GONTIJO, L.M.; MARTINS, G.F.; GUEDES, R.N.C. Reduce-risk insecticides in Neotropical stingless bee species: impact on survival and activity. Annals of Applied Biology, 167:186–196, 2015. doi: 10.1111/aab.12217
  29. VIDAL, B.C.; MELLO, M.L.S. Critical electrolyte concentration of DNA and nucleoprotein complexes in vitro. Acta Histochemica et Cytochemica, 22:471–478, 1989.

Como Citar

Diniz, T. O., Pereira, N. C., Silva, B. G., Pizzaia, W. C. S., Oliveira, F. G. M., Gigliolli, A. A. S., & Takasusuki, M. C. C. R. (2020). Toxicity and effects of combined agrochemical in Scaptotrigona bipunctata bees. Scientific Electronic Archives, 13(12), 41–53. https://doi.org/10.36560/131220201258