Skip to main content Skip to main navigation menu Skip to site footer
Agricultural Science
Published: 2020-11-05

Effects of Ascophyllum nodosum extract on kale seed germination at different temperatures

Universidade Federal da Fronteira Sul
Universidade Federal da Fronteira Sul
Universidade Federal da Fronteira Sul
Universidade Federal da Fronteira Sul
Alga marrom Brassica oleraceae var acephala condicionamento fisiológico

Abstract

Temperature is a factor that directly interferes with the germination capacity of seeds. With the rise in temperatures caused by global warming, as well as in situations of protected cultivation of plants in tropical and subtropical environments, it is necessary to study procedures that can contribute to increased tolerance to temperatures that cause stress and changes in physiological processes. Thus, the objective of this work was to evaluate the effect of the physiological conditioning of kale seeds with different doses of brown seaweed extract Ascophyllum nodosum on the germination and growth of plants at different temperatures. The experiment was carried out in a completely randomized design, with a 2 x 4 factorial scheme (temperatures x doses), with five replications. The treatments consisted of doses of 0; 0.25; 0.50; 1.0 ml. L-1 extract from the brown seaweed Ascophyllum nodosum. The effect of the treatments was evaluated by means of: percentage and speed of germination, length and dry mass of the aerial part and seedling roots, under conditions of ideal temperature (20° C) and stress (30 °C). The conditioning of kale seeds with extract of the brown seaweed Ascophyllum nodosum does not interfere in the germination of seeds, both in ideal condition and at high temperature (30 ° C); the conditioning of kale seeds with doses of 0.67 and 0.25 mL.L-1, promotes greater growth of seedling roots, at germination temperatures of 20 and 30 ° C, respectively, however, does not promote increments in shoot growth and accumulation of total seedling dry mass.  

References

  1. BEDINI, A., MERCY, L., SCHNEIDER, C., FRANKKEN, P., LUCIC-MERCY, L. Unraveling the Initial Plant Hormone Signaling, Metabolic Mechanisms and Plant Defense Triggering the Endomycorrhizal Symbiosis Behavior. Frontiers in Plant Science, vol.9, pag. 1-28, 2018.
  2. BEWLEY, J.D., BRADFORD, K., HILHORST, H.; NONOGAKI, H. Seeds: physiology of development, germination and dormancy. 3rd ed. New York: Springer, 2013. 392p.
  3. BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília, DF: MAPA/ACS, 2009a. 395p.
  4. BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Manual de Análise
  5. Sanitária de Sementes. Brasília, 2009b. 202p.
  6. CHOJNACKA K., SAEID, A., WITKOWSKA, Z., TUHY, L. Biologically active compounds in seaweed extracts—the prospects for the application. The Open Conference Proceedings Journal, vol.3, n.1, p.20–28, 2012.
  7. CHUNTHABUREE, S., SANITCHON, J., PATTANAGUL, W., THEERAKULPISUT, P. Alleviation of salt stress in seedlings of black glutinous rice by seed priming with spermidine and gibberellic acid. Notulae Botanicae Horti Agrobotanici, vol. 42, n.2, p.405–413, 2014.
  8. DOTTO, L.; SILVA, V.N. Beet seed priming with growth regulators. Semina: Ciencias Agrarias, vol. 38, p.1785–1798, 2017.
  9. DUTTA, S.K., LAYEK, J., AKOIJAM, R.S., BOOPATI, T., VANLALHMANGAIHA, S.S., SING, S.B., PRAKASH, N. Seaweed extract as natural priming agent for augmenting seed quality traits and yield in Capsicum frutescens L. Journal of Applied Phycology, vol.31, p.3803–3813, 2019.
  10. FERREIRA, R.L.; FORTI, V.A., SILVA, V.N., MELO, S.C. Temperatura inicial de germinação no desempenho de plântulas e mudas de tomate. Ciência Rural, vol.43, n.7, p.1189-1195, 2013.
  11. HAMZA, B. SUGGARS, A. Biostimulants: myths and realities. TurfGrass Trends, vol. 8, p.6–10, 2001.
  12. IBRAHIM, E.A. Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, vol. 192, p.38–46, 2016.
  13. LIU, J., HASANUZZAMAN, M., WEN, H., ZHANG, J., PENG, T., SUN, H., ZHAO, Q. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma, vol. 256, p.1217–1227, 2019.
  14. MA, H.Y., ZHAO, D.D., NING, Q.R., WEI, J.P., WANG, M.M., LIU, X.L., JIANG, C.J., LIANG, Z.W. A Multi-year Beneficial Efect of Seed Priming with Gibberellic Acid-3 (GA3) on Plant Growth and Production in a Perennial Grass, Leymus chinensis. Nature Scientific Reports, vol.8, p.1-8, 2018.
  15. MAGUIRE, J. D. Speed of germination aid in selection and evaluation for seeding emergence and vigor. Crop Science, vol. 2, n. 2, p. 76-177, 1962.
  16. MAL, D., VERMA, J., LEVAN, A., REDDY, M.R., AVINASH, A.V., VELAGA, P.K. Seed Priming in Vegetable Crops: A Review. International Journal of Current Microbiology and Applied Sciences, vol. 8, n. 06, p. 868-874, 2019.
  17. MATOS, A.C.B., BORGES, E.E.L., SILVA, L.J. Fisiologia da germinação de sementes de Dalbergia nigra (vell.) allemão ex benth) sob diferentes temperaturas e tempos de
  18. Exposição. Revista Ãrvore, vol.39, n.1, p.115-125, 2015.
  19. MASKOVA, T.; HERBEN, T. Root: shoot ratio in developing seedlings: How seedlings change their allocation in response to seed mass and ambient nutrient supply. Ecology and evolution, vol. 8, n.14, p. 7143–7150, 2018.
  20. NAKAGAWA, J. Testes de vigor baseados no crescimento de plântulas. In: VIEIRA, R.D.; CARVALHO, N.M. de. Testes de vigor em sementes. Jaboticabal: FUNEP. p. 164,1999.
  21. PANDEY, P., BHANUPRAKASH K. Effect of Seed Priming on Seed Germination and Vigour in Fresh and Aged Seeds of Cucumber. International Journal of Environment, Agriculture and Biotechnology, vol. 2, n.4, p. 2261- 2264, 2017.
  22. PAPARELLA, S., ARAUJO, S.S., ROSSI, G., WIJAYASINGHE, M., CARBONERA, D., BALESTRAZZI, A. Seed priming: state of the art and new perspectives. Plant Cell Reports, vol.34, p.1281–1293, 2015.
  23. POUITOT, A., CRABOS, A., PETRIK, I., NOVAK, O., KROUK, G., LACOMBE, B., RUFFEL, S. Responses to Systemic Nitrogen Signaling in Arabidopsis Roots Involve trans-Zeatin in Shoots. The Plant Cell, Vol. 30: 1243–1257, 2018.
  24. SHU, K., LIU, X.D., XIE, Q., HE, Z.H. Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Molecular Plant, vol. 9, p.34–45, 2016.
  25. SHER, A., SARWAR, T., NAWAZ, A., IJAZ, M., SATTAR, A., AHMAD, S. Methods of seed priming. In: HASANUZZAMAN, M.; FOTOPOULOS, V. (ORGS). Priming and pretreatement of seeds and seedlings-implication in plant stress tolerance and enhancing productivity of crops. Singapore: Springer. 2019. p.20-29.
  26. SIVRITEPE, H.; SIVRITEPE, N. Organic seed hydration-dehydration techniques improve seedling quality of organic tomatoes. Notulae Botanicae Horti Agrobotanici, vol.44, n.2, p. 399-403, 2016.
  27. SORGATTO, P. K.; SILVA, V. N. Embebição de sementes de salsa com Ascophyllum nodosum: efeitos na germinação e crescimento de plântulas sob estresse térmico. Acta Biológica Catarinense, vol. 5, p.98-106, 2018.
  28. VISHAL, B., KUMAR, P.P. Regulation of Seed Germination and Abiotic Stresses by Gibberellins and Abscisic Acid. Frontiers in Plant Science, vol.20, p.1-15, 2018.
  29. WALLY, O. S. D., CRITCHLEY, A. T., HILTZ, D., CRAIGIE, J. S., HAN, X., ZAHARIA, L. I. Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation, vol. 32, p.324–339, 2013.

How to Cite

Ternus, F. L., Tortelli, B., Milanesi, P. M., & Silva, V. N. (2020). Effects of Ascophyllum nodosum extract on kale seed germination at different temperatures . Scientific Electronic Archives, 14(5), 29–34. https://doi.org/10.36560/14520211274