Skip to main content Skip to main navigation menu Skip to site footer
Agricultural Science
Published: 2020-11-06

Physical and chemical compatibility of fungicides and adjuvant

Instituto Federal Goiano, Campus Morrinhos
Instituto Federal Goiano, Campus Morrinhos
Instituto Federal Goiano, Campus Urataí
Instituto Federal Goiano, Campus Urataí
Acidity. Electric conductivity. Alkaline hydrolysis. Hydrogen potential. Pulverization.

Abstract

Adjuvants can improve the quality of applications, but the adjuvant and pesticide interaction is a complex process, which involves many physical, chemical and physiological aspects, and can vary for each condition tested. Thus, the objective was to evaluate the physical-chemical compatibility of fungicide mixtures commonly used in soybean culture associated with different adjuvants and with water. The experiment was conducted in a completely randomized design (DIC) in a 3 x 5 factorial scheme with four replications, the first factor referring to fungicides (Fox®, Orkestra® and Mancozeb Glory®) and the second factor to adjuvants (Assist®, Aureo ®, Nimbus®, Prime® + Prime citrus® and water). The concentration of the mixtures was stipulated by adopting a mix volume of 100 L ha-1 and the dose recommended by the manufacturers. The characteristics evaluated were: physical compatibility (presence or absence of flocculation, sedimentation, phase separation, lump formation, oil separation, crystal and cream formation and foam formation) and chemical compatibility (pH and electrical conductivity). The treatment means were compared by the Tukey test at 0.05 significance. Fungicides have different affinities with adjuvants and it is not possible to generalize the recommendations. The physical-chemical compatibility between the fungicides and the adjuvants evaluated is dependent on the resting period and constant agitation before and during application is essential. In the absence of agitation in the spray tank, the Aureo® adjuvant is more suitable for maintaining the physical homogeneity of the mixes. The greatest reduction in pH, as well as the greatest increase in the electrical conductivity of the fungicide mixtures were caused by the adjuvants: Prime® + Prime Citrus®.

References

  1. BELZ, R.G.; CEDERGREEN, N.; SORENSEN, H. Hormesis in mixture – Can it be predicted? Science of the total environment, 404: 77-87, 2008.
  2. CARLSON, K.L.; BURNSIDE, O.C. Comparative phytotoxicity of ghyphosate, SC-0224, SC-0545, and HOE-00661. Weed Science, 32: 841-884, 1984.
  3. CARVALHO, F.K.; ANTUNIASSI, U.R.; CHECHETTO, R.G.; MOTA, A.A.B.; KRUGER, G.R. Blade angle effect on droplet size spectrum of rotary atomizers used in Brazil. Engenharia Agrícola, 36: 1118-1125, 2016.
  4. COSTA, L.L.; DA SILVA, H.J.P.S.; ALMEIDA, D.P.; FERREIRA, M.C.; PONTES, N.C. Droplet spectra and surface tension of spray solutions by biological insecticide and adjuvants. Engenharia Agrícola, 37: 292-301, 2017.
  5. CUNHA, J.P.A.R.; ALVES, G.S. Características físico-químicas de soluções aquosas com adjuvantes de uso agrícola. Interciência, 34: 655-659, 2009.
  6. CUNHA, J.P.A.R.; ALVES, G. S.; MARQUES, R.S. Tensão superficial, potencial hidrogeniônico e condutividade elétrica de caldas de produtos fitossanitários e adjuvantes. Revista Ciência Agronômica, 48: 261-270, 2017.
  7. DECARO JR, S.T.; FERREIRA, M.C.; LASMAR, O. Physical characteristics of oily spraying liquids and droplets formed on coffee leaves and glass surfaces. Engenharia Agrícola, 35: 588-600, 2015.
  8. DE SCHAMPHELEIRE, M.; NUYTTENS, D.; BAETENS, K.; CORNELIS, W.; GABRIEKS, D.; SPANOGHE, P. Effects on pesticide spray drift of the physicochemical properties of the spray liquid. Precision Agriculture, 10: 409-420, 2009.
  9. FRITZ, B.K.; HOFFMANN, W.C.; KRUGER, G.R.; HENRY, R.S.; HEWITT, A.; CZACZYK, Z., Comparison of drop size data from ground and aerial application nozzles at three testing laboratories. Atomization Sprays, 24: 181-192, 2014.
  10. IKEDA F. S. Resistência de plantas daninhas em soja resistente ao glifosato. Informe Agropecuário, v.4, n.276, 2013.
  11. KISSMANN, K. G. Adjuvantes para caldas de produtos agrotóxicos. In: CONGRESSO BRASILEIRO DE CIÊNCIA DAS PLANTAS DANINHAS, 21, 1997, Caxambu. Palestras e mesas redondas... Viçosa: Sociedade Brasileira da Ciência das Plantas Daninhas, 1997. p. 61-77.
  12. MACIEL, C.D.G.; GUERRA, N.; OLIVEIRA NETO A.M.; POLETINE, J.P.; BASTOS, S.LW.; DIAS, N. M.S. Tensão superficial estática de misturas em tanque de Glyphosate + Chlorimuron-Ethyl isoladas ou associadas a adjuvantes. Planta Daninha, 28: 673-685, 2010.
  13. MASKI, D.; DURAIRAJ, D. Effects of electrode voltage, liquid flow rate, and liquid properties on spray chargeability of an air-assisted electrostatic-induction spray charging system. Journal of Electrostatics, 68: 152-158,2010.
  14. MENDONÇA, C.G.; RAETANO, C.G. Tensão superficial estática de soluções aquosas com óleos minerais e vegetais utilizados na agricultura. Engenharia Agrícola, 27: 16-23, 2007.
  15. MURPHY, G. Water pH and its effect on pesticides. Ontário: Ministry of Agriculture and Food, 2004. Disponível em: <http://www.gov.on.ca/OMAFRA/english/crops/hort/news/grower/2004/08gn04a1.htm>.
  16. PETTER, A.F.; SEGATE, D.; ALMEIDA, F.A.; NETO, F.A.; PACHECO, L.P. Incompatibilidade física de misturas entre herbicidas e inseticidas. Planta daninha, 30: 449-457, 2012.
  17. PETTER, A.F.; SEGATE, D.; ALMEIDA, F.A.; NETO, F.A.; PACHECO, L.P. Incompatibilidade física de misturas entre inseticidas e fungicidas. Comunicata Scientiae, 4: 129-138, 2013.
  18. QUEIROZ, A.A.; MARTINS, J.A.S.; CUNHA, J.P.A.R. Adjuvantes e qualidade da água na aplicação de agrotóxicos. Bioscience Journal, 24: 8-19, 2008.
  19. RHEINHEIMER, D.S.; SOUZA, R.O. Condutividade elétrica e acidificação de águas usadas na aplicação de herbicidas no Rio Grande do Sul. Ciência Rural, 30: 97-104, 2000
  20. SASAKI, R.S.; TEIXEIRA, M.M.; SANTIAGO, H.; MADUREIRA, R.P.; MACIEL, C.F.S.; FERNANDES, H.C. Adjuvantes nas propriedades físicas da calda, espectro e eficiência de eletrificação das gotas utilizando a pulverização eletrostática. Ciência Rural, 45: 274-279, 2015.
  21. SILVA, J.F.; SILVA, J.F.; FERREIRA, L.R.; FERREIRA, F.A. Herbicidas: absorção, translocação, metabolismo, formulação e misturas. In: SILVA, A.A.; SILVA, J.F. (Ed.). Tópicos em manejo de plantas daninhas. Viçosa: Universidade Federal de Viçosa, 2007. 367 p.
  22. SILVA-MATTE, S.C.; COSTA, N.V.; PAULY, T.; COLTRO-RONCATO, S.; OLIVEIRA, A.C.; CASTAGNARA, D.D. Variabilidade da quebra da tensão superficial da gota pelo adjuvante (Aureo®) em função de locais de captação de água. Revista Agrarian, 7: 264-270, 2014.
  23. WOLF, R.E.; GARDISSER, D.R.; MINIHAN, C.L. Field comparisons for drift reducing/deposition aid tank mixes. St. Joseph: ASAE, 2003. 17p. (ASAE PAPER N° AA03-002).

How to Cite

Ribeiro, R. P. M. ., Costa, L. L. ., Leão-Araújo, Érica F., & Oliveira, A. (2020). Physical and chemical compatibility of fungicides and adjuvant . Scientific Electronic Archives, 14(5), 35–41. https://doi.org/10.36560/14520211275