Skip to main content Skip to main navigation menu Skip to site footer
Agricultural Science
Published: 2021-12-31

Production of lettuce varieties intended for minimal processing

Universidade Federal de Goiás
Universidade Estadual de Goiás
Universidade Federal de Goiás
Universidade Federal de Goiás
Universidade Federal de Goiás
Universidade Federal de Goiás
Universidade Federal de Goiás
Lactuca sativa, productivity, refrigeration, post-harvest

Abstract

This work aimed to study different varieties of lettuce and their potential for the production of minimally processed products. The experiment was conducted in the Horta do Setor de Horticulture, School of Agronomy, Federal University of Goiás, in soil classified as Latosol. The lettuce varieties analyzed were: 'Amelia'; "Lucy Brown"; 'Laurel'; '5007' and '5010'. The seedlings were evaluated for germination rate, total weight, leaf weight, root weight, size of the largest root, height and width of the largest leaf, total height of the seedling, number of leaves. Harvesting was carried out 40 days after transplanting, with 10 heads of lettuce of each variety and block being collected and taken to the laboratory for evaluation. The experimental design used was a randomized block design, using 4 blocks with all varieties (plot), with each plot consisting of 140 plants for each variety. The harvested heads of lettuce were evaluated for the total weight of the plant, the root and the commercial part, in addition to the percentage of the commercial part weight in relation to the total weight of the plant. Lettuces of each variety that were available under commercial conditions were harvested, stored in plastic boxes and transported to a minimal food processing company. The experimental design was completely randomized, using 3 replications for each variety. The evaluations of titratable acidity, soluble solids and ascorbic acid contents were carried out every two days, totaling 6 days of storage. The varieties 5007 and 5010 are recommended for planting and minimal processing, as they performed better in terms of the evaluated parameters.

References

  1. ÁLVARES, V.S.; FINGER, F.L.; SANTOS, R.C.A.; SILVA, J.R.; CASALI, V.W.D. Effect of pre-cooling on the postharvest of parsley leaves. Journal of Food Agriculture & Environment, v.5, n.2, p.31-34, 2007.
  2. AMARANTE, C.; BANKS, N.H.; GANESH, S. Relationship between character of skin cover of coated pears and permeance to water vapour and gases. Postharvest Biology and Technology, v.21, n.3, p.291-301, 2001. < 10.1016/S0925-5214(00)00176-9>.
  3. AOAC.Official Methods of Analysis of the Association of Official Analytical Chemists, vol. 16. Patricia Cunningan, Washington, 1997.
  4. AZEVEDO, A.M.; JÚNIOR, V.C.A.; PEDROSA, C.E.; OLIVEIRA, C.M.; DORNAS, M.F.S.; VALADARES, N.R. Agrupamento multivariado de curvas na seleção de cultivares de alface quanto à conservação pós-colheita. Horticultura Brasileira. v.33, n.3, p.362-367, 2015. < https://doi.org/10.1590/S0102-053620150000300014>.
  5. BIASI, L.A., LIMA, M.R., GABARDO, N.P., SCHMID, M.L., MARTHAUS, P.S., ZAMBON, F.R.A. Competição de cultivares de alface na região metropolitana de Curitiba. Horticultura Brasileira, v.9, n.1, p.14- 15, 1991.
  6. CHITARRA, M. I. F., CHITARRA, A. B. Pós-colheita de frutos e hortaliças: fisiologia e manuseio. Lavras: Ed UFLA, 2005. 785p.
  7. FREITAS-SILVA, O.; MORALES-VALLE, H.; VENÂNCIO, A. Potential of aqueous ozone to control aflatoxigenic fungi in Brazil nuts. ISRN Biotechnology, v.2013, p.1-6, 2013. < https://dx.doi/10.5402/2013/859830>.
  8. GALATI, V.C.; GUIMARA~ES, J.E.R.; MARQUES, K.M.; FERNANDES, J.R.D.; CECÍLIO FILHO, A.B.; MATTIUZ. B. Aplicação de silício, em hidroponia, na conservação pós-colheita de alface americana ‘Lucy Brown’ minimamente processada. Ciência Rural, v.45, n.11, p.1932-1938, 2015. < https://doi.org/10.1590/0103-8478cr20140334>.
  9. GOMES, T.M.; BOTREL, T.A.; MODOLO, V.A.; OLIVEIRA, R.F. Aplicação de CO2 via água de irrigação na cultura da alface. Horticultura Brasileira, Brasília, v.23, n.2, p.316-319, 2005. < https://doi.org/10.1590/S0102-05362005000200031>.
  10. KADER, A.A. Biochemical and physiological basis for effects of controlled and modified atmospheres on fruits and vegetables. Food Technology, v.40, n.5, p.99-104, 1986.
  11. MATTOS, L.M.; MORETTI, C.L.; CHITARRA, A.B.; PRADO, M.E.T. Qualidade de alface crespa minimamente processada armazenada sob refrigeração em dois sistemas de embalagem. Horticultura Brasileira, v.25, n.4, p.504-508, 2007. <https://doi.org/10.1590/S0102-05362007000400003>.
  12. RANGANA, S. Manual of analysis fruit and vegetable products. New Delhi, McGraw-Hill, 1997.
  13. SANTI, A.; CARVALHO, M.A.C.; CAMPOS, O.R.; SILVA, A.F.; ALMEIDA, J.L.; MONTEIRO, S. Ação de material orgânico sobre a produção e características comerciais de cultivares de alface. Horticultura Brasileira, v.28, n.1, p.87-90, 2010. <https://doi.org/10.1590/S0102-05362010000100016>.
  14. TOFANELLI, M.B.D.; FERNANDES, M.S.; CARRIJO, N.S.; MARTINS FILHO, O.B. Levantamento de perdas em hortaliças frescas na rede varejista de Mineiros. Horticultura Brasileira, v.27, n.1, p.116-120, 2009. < https://doi.org/10.1590/S0102-05362009000100024>.

How to Cite

Nascimento, A. dos R., Morgado, C. M. A., Aguiar, F. C. de O., Santana, I. G., Lago, I. N., Moura, A. C. M., & Cunha Junior, L. C. (2021). Production of lettuce varieties intended for minimal processing. Scientific Electronic Archives, 15(1). https://doi.org/10.36560/15120221491