Skip to main content Skip to main navigation menu Skip to site footer
Agricultural Science
Published: 2022-02-28

Variation in wood properties of 26-year-old Handroantus impetiginosus cultivated in Luiz Antônio, SP

Instituto de Pesquisas Ambientais
Instituto de Pesquisas Ambientais
Universidade Federal de São Carlos, Campus de Sorocaba
Instituto de Pesquisas Ambientais
Instituto de Pesquisas Ambientais
microfibril angle, basic density, volumetric shrinkage, longitudinal variation

Abstract

Provenance testing can provide information on silvicultural behavior and wood quality of species for selection of genetic material for different locations and conservation of the genetic base. The aim of this work was to study the longitudinal variation of basic density, volumetric shrinkage and microfibril angle of wood from two provenances (Assis and Bauru) of Handroantus impetiginosus planted in Luiz Antonio SP. After 26 years of planting, twelve trees were felled, six from each provenance. According to the results obtained, it could be concluded that the analysis of variance (ANOVA) showed that for the provenance there was a significant variation for the volumetric shrinkage of the wood and for basic wood density and microfibril angle the significance of variation did not occur. The basic wood density varied significantly between the different positions, at the height of the tree and for volumetric shrinkage, and for the microfibril angle it did not occur. There is a positive relationship between tree height and basic wood density of wood, for Assis and Bauru provenances.

References

  1. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS - ABNT. Normas Técnicas. NBR 7190: Projeto de Estruturas de Madeira. Rio de Janeiro, 1997, 107p.
  2. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – ABNT. Normas Técnicas. NBR 11941: Densidade básica da madeira. Rio de Janeiro, 2003, 6p.
  3. CARVALHO, P.E.R. Espécies arbóreas brasileiras. Brasília: Embrapa Informação Tecnológica. Colombo: Embrapa Florestas, 2003. 1039 p.
  4. DONALDSON, L. Microfibril angle: measurement, variation and relationships: a review. IAWA Journal. Vol. 29, p. 345-386, 2008.
  5. DOWNES, G., EVANS, R., WIMMER, R., FRENCH, J., FARRINGTON, A., LOCK, P. Wood, pulp and handsheet relationships in plantation grown Eucalyptus globulus. Appita Journal. Vol. 56, p. 221-228. 2003.
  6. FANG, S., LIU, Y., YUE, J., TIAN, Y., XU, X. Assessments of growth performance, crown structure, stem form and wood property of introduced poplar clones: results from a long-term field experiment at a lowland site. Forest Ecology and Management. Vol. 479, p. 1-12, 2020.
  7. FLORES, T.B., ALVARES, C.A., SOUZA, V.C., STAPE, J.L. Eucalyptus no Brasil: Zoneamento climático e guia para identificação. Piracicaba: IPEF, 2016. 448 p.
  8. HUNG, T.D., BRAWNER, J.T., LEE, D.J., MEDER, R., DIETERS, M.J. Genetic variation in growth and wood-quality traits of Corymbia citriodora subsp. variegata across three sites in south-east Queensland, Australia. Southern Forests. Vol. 78. p. 225-239, 2016.
  9. KNAPIC, S., GRAHN, T., LUNDQVIST, S.O., PEREIRA, H. Juvenile Wood Characterization of Eucalyptus botryoides and E. maculata by using SilviScan. BioResources. Vol. 13, p. 2342-2355, 2018.
  10. KORD, B., KIALASHAKI, A., KORD, B. The within-tree variation in wood density and shrinkage, and their relationship in Populus euramericana. Turkish Journal of Agriculture and Forestry. Vol. 34, p. 121-126, 2010.
  11. LENEY, L. A technique for measuring fibril angle using polarized light. Wood and Fiber Science. Vol. 13, p.13-16, 1981.
  12. LIU, Y., ZHOU, L., ZHU, Y., LIU, S. Anatomical features and its radial variation among different Catalpa bungei clones. Forests. 2020, 11, 824. https://doi.org/10.3390/f11080824.
  13. LOKMAL, N., Mohd Noor, A.G. (2017). Radial variation in microfibril angle of Acacia mangium. International Journal of Environmental & Agriculture Research. Vol. 3, p. 35-42, 2017.
  14. LUNDQVIST, S.O., GRAHN, T., OLSSON, L., SEIFERT, T. Comparison of wood, fibre and vessel properties of drought-tolerant eucalypts in South Africa. Southern Forests. Vol. 79, p. 215-225, 2017.
  15. MAINIERI, C., CHIMELO, J.P. Fichas de Características das Madeiras Brasileiras. São Paulo: Instituto de Pesquisas Tecnológicas, 1989, 418p.
  16. MELO, L.E.D.L., GOULART, S.L., GUIMARÃES, B.M.R., GUIMARÃES NETO, R.M., SARTORI, C.J., LIMA, J.T. Prediction of microfibril angle for Eucalyptus microcorys wood by fiber length and basic density. Maderas. Ciencia y Tecnología, Vol. 20, p. 553-562, 2018.
  17. PAES, J.B., MORAIS, V.D.M., LIMA, C.R. Resistência das madeiras de aroeira (Myracrodruon urundeuva), cássia (Senna siamea) e ipê (Tabebuia impetiginosa) a fungos e cupins xilófagos, em condições de laboratório. Floresta e Ambiente. Vol. 9, p. 135-144, 2002.
  18. PAULA, J.E., ALVES J.L. 897 madeiras nativas do Brasil. Porto Alegre: Cinco Continentes, 2007. 279 p.
  19. PAULA, J.E., COSTA, K. P. Densidade da madeira de 932 espécies nativas do Brasil. Porto Alegre: Cinco Continentes, 2011. 248p.
  20. PIÑA-RODRIGUES, F.C.M., SILVA, J.M.S. Silvicultura Tropical: o potencial madeireiro e não madeireiro das espécies tropicais. 1ed. Sorocaba: Editora dos Autores, 2021, v. 1, 596 p.
  21. PRASETYO, A., AISO, H., ISHIGURI, F., WAHYUDI, I., WIJAYA, I.P.G., OHSHIMA, J., YOKOTA, S. Variations on growth characteristics and wood properties of three Eucalyptus species planted for pulpwood in Indonesia. Tropics. Vol. 26, p. 59-69, 2017.
  22. RIBEIRO, A.O., MORI, F.A., MENDES, L.M. Características das dimensões das fibras e análise do ângulo microfibrilar de Toona ciliata cultivada em diferentes localidades. Floresta. Vol. 41, p. 47-56, 2011.
  23. SANTOS, H.G., JACOMINE, P.K.T., ANJOS, L.H.C., OLIVEIRA, V.A., LUMBRERAS, J.F., COELHO, M.R., ALMEIDA, J.A., ARAUJO FILHO, J.C., OLIVEIRA, J.B., CUNHA, T.J.F. Sistema brasileiro de classificação de solos. 5. ed. Brasília: Embrapa, 2018. 356 p.
  24. S.A.S. Institute Inc. SAS Procedures Guide. Version 8 (TSMO). SAS Institute Inc. Cary, N.C., 27513, USA, 1999.
  25. SHIRAI, T., YAMAMOTO, H., YOSHIDA, M., INATSUGU, M., KO, C., FUKUSHIMA, K., KULE, A. Eccentric growth and growth stress in inclined stems of Gnetum gnemon. IAWA Journal. Vol. 36, p. 365-377, 2015.
  26. TIENNE, D.L.C., OLIVEIRA, J.N., PALERMO, F.P. MOURA., SOUSA, J.S., LATORRACA, J.V.F. Influência do espaçamento no ângulo das microfibrilas e comprimento de fibras de clone de eucalipto. Revista Forestal Latinoamericana. Vol. 24, p. 67-83. 2009.
  27. WESSELS, C.B., CRAFFORD, P.L., DU TOIT, B., GRAHN, T., JOHANSSON, M., LUNDQVIST, S.O., SEIFERT, T. Variation in physical and mechanical properties from three drought tolerant Eucalyptus species grown on the dry west coast of Southern Africa. European Journal of Wood and Wood Products. Vol. 74, p. 563-575, 2016.
  28. ZANUNCIO, A.J.V., CARVALHO, A.G., CARNEIRO, A.D. C.O., VALENZUELA, P., GACITÚA, W., LEITE, F.P., COLODETTE, J.L. Characterization of eucalyptus clones subject to wind damage. Pesquisa Agropecuária Brasileira. Vol. 52, p. 969-976, 2017.

How to Cite

Santos, C. M. ., Romeiro, D. ., Amorim, E. P. ., Longui, E. L. ., & Lima, I. L. de . (2022). Variation in wood properties of 26-year-old Handroantus impetiginosus cultivated in Luiz Antônio, SP. Scientific Electronic Archives, 15(3). https://doi.org/10.36560/15320221524