Skip to main content Skip to main navigation menu Skip to site footer
Agricultural Science
Published: 2022-08-31

Morphophysiological aspects of bean plants cultivated with natural reactive phosphate and solubilizing and growth promoting microorganisms

Universidade Federal da Fronteira Sul- Campus Erechim
Universidade Federal da Fronteira Sul- Campus Erechim
Universidade Federal da Fronteira Sul- Campus Erechim
Universidade Federal da Fronteira Sul- Campus Erechim
Universidade Federal da Fronteira Sul- Campus Erechim
Universidade Federal da Fronteira Sul- Campus Erechim
Universidade Federal da Fronteira Sul- Campus Erechim
Universidade Federal da Fronteira Sul- Campus Erechim
Phosphorous, microorganisms, photosynthesis, Phaseolus vulgaris

Abstract

Beans (Phaseolus vulgaris L.) are an economically important crop, being part of the daily meal of a large part of the Brazilian population. One of the most common problems in bean cultivation is the low availability and low mobility of phosphorus. Among the strategies to improve the acquisition of phosphorus from the soil, the association of plants with microorganisms that promote growth and/or phosphate solubilizers stands out, since the efficiency of phosphate fertilizers depends directly on the microbial action in their cycle. Thus, the objective of this study was to evaluate physiological, morphological and biochemical characteristics in bean plants cultivated with the presence or absence of reactive natural phosphate associated or not with seed inoculation with different efficient microorganisms. The experiment was carried out in a greenhouse with a completely randomized design, consisting of eight treatments and four replications. The treatments were composed of: i) control, and application of ii) Azospirillum brasilense, iii) Bacillus subtilis and Bacillus megaterium, iv) efficient microorganisms (ME), v) reactive natural phosphate (RNP), vi) RNP + A. brasilense, vii) RNP + Bacillus, and viii) RNP + ME. Gas exchange and material collection to determine height, stem diameter, dry matter, acid phosphatase activity and P content were performed 55 days after sowing. The treatment RNP + A. brasilense and other microorganisms contributed to a higher photosynthetic rate and transpiration in bean plants. The treatments RNP + ME and RNP + Bacillus promoted greater plant height and stem diameter, respectively. The shoot dry matter was higher in the RNP + ME treatment, in relation to the other treatments. Acid phosphatase activity was higher in the area of ​​bean plants exposed to reactive natural phosphate, and in the roots of plants exposed to treatment with species of the genus Bacillus. It was possible to verify that the application of microorganisms with natural phosphate, despite not causing an increase in the P content of the shoot, favored the conditions of growth and production of bean plants.

References

  1. ABREU, C. S. de; FIGUEIREDO, J. E. F.; OLIVEIRA-PAIVA, C. A.; SANTOS, V. L. dos; GOMES, E. A.; RIBEIRO, V. P.; BARROS, B. de A.; LANA, U. G. de P.; MARRIEL, I. E. Maize endophytic bactéria as mineral phosphate solubilizers. Genetics and Molecular Research. v. 16, n. 1, p. 1-13, 2017.
  2. ALLAHVERDIYEV, S. R.; KIRDAR, E.; GUNDUZ, G.; KADIMALIEV, D.; REVIN, V.; FILONENKO, V.; RASULOVA, D. A; ABBASOVA, Z. I; GANI-ZADE, S. I.; ZEYNALOVA, E. M.; Effective microorganisms (EM) technology in plants. Technology. Bardin. Turquia. ed. 14, p. 103- 106, 2014.
  3. ALMAGRABI, O. A., ABDELMONEIM, T. S. Using of arbuscular mycorrhizal fungi to reduce the deficiency effect of phosphorous fertilization on maize plants. p. 1648, 2012.
  4. ALTIERI, M. A. Agroecology: the scientific basis of alternative agriculture. Boulder: Westview Press, 1987.
  5. ALVES, R. T. et al. Microrganismo e disponibilidade de fósforo (P) nos solos: uma análise crítica. Embrapa Cerrados. Planaltina. Distrito Federal. ed. 1, 2003.
  6. ANDRADE, F. M. C. Caderno dos microrganismos eficientes (EM). Instruções práticas sobre uso ecológico e social do EM. UFV, Viçosa, MG, ed. 3, 2020.
  7. CARSTENSEN, A., HERDEAN, A., SCHMIDT, S., SHARMA, A., SPETEA, C., PRIBIL, M., HUSTEND, S. The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Phisiology. v. 177, p. 271- 184, 2018.
  8. COELHO, J. D. Produção de grãos – feijão, milho e soja. Caderno setorial ETENE. Fortaleza- CE, 2018. Disponível em: https://www.bnb.gov.br/documents/80223/3585904/graos_33-2018.pdf/ed76744b-3ae6-ef50-43f2-f4e72c457f10. Acesso em: 31 mar. 2020.
  9. COLA, G. P. A.; SIMÃO, B. P. Rochagem como forma alternativa de suplementação de potássio na agricultura agroecológica. Revisão de literatura. Revista Verde de Agroecologia e Desenvolvimento Sustentável Grupo Verde de Agricultura Alternativa (GVAA). Mossoró. Rio Grande do Norte. v. 7, n. 1, p. 1- 8, 2012.
  10. CONA Acompanhamento da Safra Brasileira. v. 1, n. 1, 2021.
  11. BONFIM, F.P.G. et al. Caderno dos microrganismos eficientes (EM). Instruções práticas sobre uso ecológico e social do EM. UFV, Viçosa, MG, 2011.
  12. DINIZ, P. F. A.; OLIVEIRA, L. E. M.; GOMES, M. P.; CASTRO, E. M.; MESQUITA, A. C.; BONONE, L. T. S.; SILVA, L. Crescimento, parâmetros biofísicos e aspectos anatômicos de plantas jovens de seringueira inoculadas com fungo micorrízico arbuscular Glomus clarum. Acta Botanica Brasilica. p. 65- 72, 2010.
  13. EMBRAPA. System of Soil Classification. Brasília: Embrapa Solos, ed. 3, p, 353, 2013.
  14. ELIAS, H. T. Informações técnicas para o cultivo do feijão na Região Sul brasileira. Comissão Técnica Sul- Brasileira de feijão. Epagri. Florianópolis. Santa Catarina. ed. 2, p. 157, 2012.
  15. ETESAMI, H. Enhanced phosphorus fertilizer use efficiency with microorganisms. In: Meena R. (eds) Nutrient Dynamics for Sustainable Crop Production. p. 215- 245, 2020.
  16. FAOSTAT. Crops. Disponível em: http://www.fao.org/faostat/en/#data/QC. Acesso em: 30 mar. 2022.
  17. FERNANDES, L. A.; FAQUIN, V.; FURTINI, A. E. N.; CURI, N. Frações de fósforo e atividade da fosfatase ácida em plantas de feijoeiro cultivadas em solos de várzea. Revista Brasileira de Ciência do Solo. p. 561- 571, 2000.
  18. GAO, X., GUO, H., ZHANG, Q., GUO, H., ZHANG, L., ZHANG, C., GOU, Z., LIU, Y., WEI, J., CHEN, A., CHU, Z. Fungos micorrízicos arbusculares (FMA) melhoraram o crescimento, a produtividade, a qualidade da fibra e a regulação do fósforo em algodoeiro de terras altas (Gossypium hirsutum L.). Cientific Reports. p. 12, 2020.
  19. GUIMIERE, T.; ROUSSEAU, A. N.; COSTA, D. P.; CASSETARI, A.; COTTA, S. R.; ANDREOTE, F. D.; GUIMIERE, S. J.; PAVINATO, P. S. Phosphorus source driving the soil microbial interactions and improving sugarcane development. Scientific Reports. p. 1- 9, 2019.
  20. HERDRICKSON, L.; CHOW, W. S.; FURBANK, R. T. Low temperature effects on grapevine photosynthesis: the role of onorganic phosphate. Fuctional Plant Biologi. v. 31, p. 789- 801, 2004.
  21. HEINEMANN, A. L. Feijão. cap. 11, pg. 185, In: Agrometeorologia dos cultivos. Instituto nacional de meteorologia – INMET. Brasília. Distrito Federal. p. 530, 2009.
  22. HUNGRIA, M.; CAMPO, R. J; PEDROSA, F. O. Inoculation with selected strains of Azospirillum brasilense and Azospirillum lipoferum improves yields of maize and wheat. Brazil Plant and Soil. p. 413-425, 2010.
  23. JOHRI, A.K.; OELMÜLLER, R.; DUA, M.; YADAV, V.; KUMAR, M.; TUTEA, N.; VARMA, A.; BONFANTE, P.; PERSSON, B.L.; STROUD, R.M.; Fungal association and utilization of phosphate by plants: success, limitations, and future prospects. Front. Microbiol. 2015, 6, 984.
  24. KALAYU, G. Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy, v. 2019, p.7, 2019.
  25. LIN, Z. H.; CHEN, L.; CHEN, R.; ZHANG, F.; JIANG. H.; TANG, N. CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply. Plant biology, p. 43-55, 2009.
  26. MA. Y.; VOSATKA, M.; FREITAS, H. Beneficial Microbes Alleviate Climatic Stresses in Plants. Plant Sci. p. 595, 2019.
  27. MENDES, I. C.; REIS, F. B. J. Microrganismo e disponibilidade de fósforo (P) nos solos: uma análise crítica. Embrapa Cerrados. Planaltina. Distrito Federal. ed. 1, 2003.
  28. MENG, X., CHEN, W., WANG, Y., HUANG, Z., CHEN, L., Y, T. Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and
  29. antioxidant metabolism in Citrus grandis. Plos One. p. 20, 2021.
  30. MORENCO, R. Fisiologia Vegetal. Viçosa, MG. Ed. UFV. ed. 3, p. 251. 2009.
  31. NAHAS, E. Control of acid phosphatases expression from Aspergillus niger by Soil Characteristics. Agriculture, Agribusiness and Biotechnology. v. 58, n. 5, p. 658, 2015.
  32. OLIVEIRA, T. C.; MÜLLER, C.; CABRAL, J. S. R.; TAVARES, G. G.; REZENDE, L. S.; SOUCHIE, E.; MENDES, GISELLE C. O papel das micorrizas na mitigação dos estresses abióticos em plantas cultivadas. o papel das micorrizas na mitigação dos estresses abióticos em plantas cultivadas. ed. 16.: Atena, v. 1, p. 180-190, 2021.
  33. OLIVEIRA, T. C.; UEHARA, H. M.; DA SILVA, L. D.; TAVARES, G. G.; SANTANA, L. R.; CABRAL, J. S. R.; SOUCHIE, E. L.; MENDES, G. C. Produtividade da soja em associação ao fungo micorrízico arbuscular Rhizophagus clarus cultivada em condições de campo. Revista de Ciências Agroveterinárias, Lages, v. 18, n. 4, p. 530-535, 2019.
  34. PELLEGRINO, E., AND BEDINI, S. Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol. v. 68, p. 429–439, 2014.
  35. PIMENTEL, C. Leaf protoplasmic tolerance to water Stress in bean genotypes. Physiology and Molecular Biology of Plants. v. 6, p. 15-20, 2005.
  36. RAMAKRISHNA, W.; YADAV, R.; LI, K. Bactérias promotoras de crescimento de plantas na agricultura: dois lados de uma moeda. Ecologia Aplicada ao solo, v. 138, p. 10- 18, 2019.
  37. RAVEN, J. A. RNA function and phosphorus use by photosynthetic organisms. Review Article. v. 4, p. 536, 2013.
  38. RODRÍGUEZ, H.; FRAGA, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances. p. 319-339, 1999.
  39. SILVA, A. A.; DELATORRE, C. A. Alterações na arquitetura de raiz em resposta à disponibilidade de fósforo e nitrogênio. Revista de Ciências Agroveterinárias. v. 8, n. 2, p. 152- 163, 2009.
  40. SILVA, C. E. M.; GONÇALVES, J. F. C.; FELDPAUSCH, T. R.; LUIZÃO, F. J.; MORAIS, R. R.; RIBEIRO, G. Eficiência no uso dos nutrientes por espécies pioneiras crescidas em pastagens degradadas na Amazônia central. Acta Amazonica, 503-512. 2006.
  41. SILVA, L. S. Manual de calagem e adubação para os estados do Rio Grande do Sul e Santa Catarina. Sociedade Brasileira de Ciência do solo- Núcleo Regional Sul. [s. l.]: Comissão de Química e Fertilidade do Solo- RS/ SC, p. 376, 2016.
  42. SOUZA, R.; AMBROSINI, A.; PASSAGLIA, L. M. P. Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology. 2015, v. 38, n. 4, p. 401-419. Disponível em: https://www.scielo.br/j/gmb/a/qdJ8jSMKJjbszhVDncqpxpp/?lang=en#. Acesso em: 21 jun. 2021.
  43. TABALDI, L. A.; RUPPENTHAL, R.; CARGNELUTTI, D. Effectes of metal elements on acid phosphatase activity in cucumber (Cucumis sativus L.) seedlings. Environmental and Experimental Botany. Amsterdam, v. 59, p. 43-48, 2007.
  44. TALAAT, N. B.; GHONIEM, A. E.; ABDELHAMID, M. T.; SHAWKY, B. T. Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseuolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regul. pg. 281-295. 2015. Disponível em: www.researchgate.net/publicatin/280601351. Acesso em: 05 abr. 2020.
  45. TAIZ, L.; ZEIGER, E. Fisiologia vegetal. Porto Alegre: Artmed, ed. 4, 2009.
  46. TEDESCO. M. J.; GIANELLO, C.; BISSANI, C. A.; BOHNEN, H.; VOLKWEISS, S. J. Análise de solo, plantas e outros matérias. Boletim técnico. UFRGS. Porto Alegre. ed. 2, n. 5, 1995.
  47. UNITED NATIONS ENVIRONMENT PROGRAMME (UNEP). Global. Environment outlook 2000. London: Earthscan Publications. 2000.
  48. .
  49. VENEKLAAS, E. J.; LAMBERS, H.; BRAGG, J.; FINNEGAN, P. M.; LOVELOCK, C. E.; PLAXTON, W. C.; PRINCE, C. A.; SCHEIBLE, W.; SHANE, M. W.; WHITE, J. A. R. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytologist, p. 306-320, 2012.
  50. WANG, Y.; SHI, Y.; LI, B.; SHAN, C.; IBRAHIM, M.; JABEEN, A.; XIE, G. S. Phosphate solubilization of Paenibacillus polymyxa and Paenibacillus macerans from mycorrhizal and non- mycorrhizal cucumber plants. African Journal of Microbiology Research, v. 6, n. 21, p. 4567-4573, 2012.
  51. WARREN, C. R. How does P affect photosynthesis and metabolite profiles of Eucalyptus globules? Tree Physiology, p. 727-739, 2011.
  52. ZHANG, T. MA, F. H. L. Phosphate-solubilizing bactéria from safflower rhizosphere and their effect on seedling growth. Open Life Sciences. 14, n. 1, p. 246- 254, 2019.

How to Cite

Garbin, E., Cargnelutti, D., Engel, C. L., de Sá, K. R. ., Galon, L., Müller, C. ., … Castamann, A. (2022). Morphophysiological aspects of bean plants cultivated with natural reactive phosphate and solubilizing and growth promoting microorganisms. Scientific Electronic Archives, 15(9). https://doi.org/10.36560/15920221583