Skip to main content Skip to main navigation menu Skip to site footer
Agricultural Science
Published: 2024-04-30

Biological control of banana nematodes by auxin-producing bacteria

Universidade Federal de Mato Grosso - Campus de Sinop
Embrapa Agrossilvipastoril
Engenheiro Agrônomo
Universidade Federal de Mato Grosso - Campus de Sinop
biocontrol, antagonism, Yersinia bercovieri

Abstract

In this work was evaluated the effect of strains of auxin-producing bacteria selected toward the antagonism to Mycosphaerella musicola on the biocontrol of Pratylenchus sp., Helicotylenchus sp. and Radopholus sp. in banana seedlings. The treatments consisted of the application of 25 mL of a bacterial suspension (109 cfu. mL-1) of five bacterial strains (BB-6, BS-12, BB-9, BS-8 and BS-17); a mycorrhizal fungus (FM) (100 spores. g-1 of soil); its combination with bacterial strains and 2 more commercial biological products, totaling 14 treatments in 5 replications. After 60 days, in roots, no efficacy was observed in controlling nematodes by any biocontrol agent tested. In soil, the highlighted treatment on biocontrol of nematodes was the BS-17 strain, with a significant reduction in Pratylenchus sp populations (78.3%) and Helicotylenchus sp. (87,9%). Likewise, it was observed that the treatments FM+BS-12, FM+BS-8 and FM+BS-17 were effective in reducing Pratylenchus sp. populations, with control levels varying between 57,6% and 64,6%. It was also observed that BS-17 and FM+BS-17 strains were effective in reducing the total population of phytonematodes in the soil, when compared to the control, with control levels varying between 66.8% and 81.2%. %. Of the microorganisms tested, the BS-17 strain highlighted from the others when used alone. When used together with the mycorrhizal fungus, BS-17, BS-12, BB-6 and BS-8 strains were the most promising in the biocontrol of phytonematodes, requiring additional studies to evaluate their real potential for use.

 

References

  1. BETTIOL, W. Controle de doenças de plantas com agentes de controle biológico e outras tecnologias. In: CAMPANHOLA, C. BETTIOL, W. (Ed) Métodos alternativos de controle fitossanitário. Jaguariúna: Embrapa, 2003.191-215 p.
  2. BULHÕES, C. C.; MELO, I. S.; SHIOMI, H. F. Biocontrole da antracnose em frutos de maracujá amarelo por bactérias antagônicas a fitopatógenos. Scientific Electronic Archives, v.12, n.4, p.10-16, 2019.
  3. CARNIEL, E. The Yersinia high-pathogenicity island: an iron-uptake island. Microbes and Infection, v.3, p.561-569, 2001.
  4. CAMPOS, M.A.S. Bioprotection by arbuscular mycorrhizal fungi in plants infected with Meloidogyne nematodes: A sustainable alternative. Crop Protection, v.135, p.1-8, 2020.
  5. CHEN, G.; ZHANG, Y.; LI, J.; DUNPHY, G.B.; PUNJA, Z.K.; WEBSTER, J.M. Chitinase activity of Xenorhabdus and Photorhabdus species, bacterial associates and entomopathogenic nematodes. Journal of Invertebrate Pathology, v.68, p.101-108, 1996.
  6. COOLEN, W. A.; D’HERDE, C. J. A method for the quantitative extraction of nematodes from plant tissue. Ghent: State Nematology and Entomology Research Station, 1972, 77p.
  7. FALCÃO, J.P. Yersinia, Encyclopedia of Food Microbiology, v.3, p.2342-2350, 2014.
  8. FREW, A.; POWELL, J.R.; GLAUSER, G.; BENNETT, A.E.; JOHNSON, S.N. Mycorrhizal fungi enhance nutrient uptake but disarm defences in plant roots, promoting plant-parasitic nematode populations. Soil Biology and Biochemistry, v.126, p.123–132, 2018.
  9. GEHDEMANN, J. W.; NICOLSON, T. H. Spore of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, v.46, n.2, p.235-244, 1963.
  10. JANKIEWICZ, U.; BRZEZINSKA, M.S.; SAKS, E. Identification and characterization of a chitinase of Stenotrophomonas maltophilia, a bacterium that is antagonistic towards fungal phytopathogens. Journal of Bioscience and Bioengineering, v.113, n.1, p.30-35, 2012.
  11. JANKIEWICZ, U.; LARKOWSKA, E.; BRZEZINSKA, M.S. Production, characterization, gene cloning, and nematocidal activity of extracellular protease from Stenotrophomonas maltophilia N4. Journal of Bioscience and Bioengineering, v.121, n.6, p.614-618, 2016.
  12. JENKINS, W. R. A rapid centrifugal flotation technique for separating nematodes from soil. Plant Disease Reporter, v.48, n.1, p.692, 1964.
  13. KHAN, M.R.; HASAN, M.A. Nematode diversity in banana rhizosphere from west Bengal, India. Journal of Plant Protection Research, v.50, n.3, p.263-268, 2010.
  14. KOUR, D.; RANA, K.L.; YADAV, A.N.; YADAV, N.; KUMAR, M.; KUMAR, V.; VYAS, P.; DHALIWAL, H.S.; SAXENA, A.K. Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, v.23, p.1-11, 2020.
  15. KUBO, R.K.; MACHADO, A.C.Z.; OLIVEIRA, C.M.G. Nematoides fitoparasitos da bananeira. Bananicultura: manejo fitossanitário e aspectos econômicos e sociais da cultura. São Paulo: Instituto Biológico, v.1, p.136-163, 2013
  16. LE GUERN, A.S.; MARTIN, L.; SAVIN, C.; CARNIEL, E. Yersiniosis in France: overview and potential sources of infection. International Journal of Infectious Diseases, v.46, p.1-7, 2016.
  17. MAHMUD, A.A.; UPADHYAY, S.K.; SRIVASTAVA, A.K.; BHOJIYA, A.A. Biofertilizers: A Nexus between soil fertility and crop productivity under abiotic stress. Current Research in Environmental Sustainability, v.3, p.1-14, 2021.
  18. MANTOVANELLO, C.M.; MELO, I.S. Isolamento e seleção de rizobactérias promotoras de crescimento de plantas de tomate (Lycopersicon esculentum). Summa Phytopathologica, v.20, n.2, p.123-126, 1994.
  19. MARROCOS, S.T.P.; NOVO JUNIOR, J.; GRANGEIRO, L.C.; AMBRÓSIO, M.M.Q.; CUNHA, A.P.A. Composição química e microbiológica de biofertilizantes em diferentes tempos de decomposição. Revista Caatinga, v.25, n.4, p.34-43, 2012.
  20. MARTINEZ, C.; MICHAUD, M.; BELANGER, R.R.; TWEDDELL, R.J. Identification of soils suppressive against Helminthosporium solani, the causal agent of potato silver scurf. Soil Biology and Biochemistry, v.34, n.12, p.1861-1868, 2002.
  21. MEDEIROS, M. B.; LOPES, J.S. Biofertilizantes líquidos e sustentabilidade agrícola. Bahia Agrícola. P. 24-26, 2006.
  22. MHATRE, P.H.; KARTHIK, C.; KADIRVELU, K.; DIVV, K.L.; VENKATASALAM, E.P.; SRINIVASAN, S.; RAMKUMAR, G.; SARANYA, C.; SHANMUGANATHAN, R. Plant growth promoting rhizobacteria (PGPR): A potential alternative tool for nematodes bio-control. Biocatalysis and Agricultural Biotechnology, v.17, p.119-128, 2019.
  23. MOHAMED, C.; NAJLA, S.; OUELLETTE, G.B. Ultrastructure of in vivo interactions of the antagonistic bacteria Bacillus cereus X16 and B. thuringiensis 55T with Fusarium roseum var. sambucinum, the causal agent of potato dry rot. Phytopathologia Mediterranea, v.42, n.1, p.41-54, 2003.
  24. MUHAMMAD, S.; AMUSA, N.A. In vitro inhibition of growth of some seedling blight inducing pathogens by compost-inhabitant microbes. African Journal of Biotechnology, v.2, n.6, p.161-164, 2003.
  25. RAIMI, A.; ROOPNARAIN, A.; ADELEKE, R. Biofertilizer production in Africa: Current status, factors impeding adoption and strategies for success. Scientific African, v.11, p.1-19, 2021.
  26. SEONG, J.; SHIN, J.; KIM, K.; CHO, B.K. Microbial production of nematicidal agents for controlling plant-parasitic nematodes. Process Biochemistry, v.108, p.69-79, 2021.
  27. SHARMA, M.; SAINI, I.; KAUSHIK, P.; ALDAWSARI, M.M.; BALAWI, T.A.; ALAM, P. Mycorrhizal fungi and Pseudomonas fluorescens application reduces root-knot nematode (Meloidogyne javanica) infestation in eggplant. Saudi Journal of Biological Sciences, v.28, p.3685-3691, 2021.
  28. SHIOMI, H. F.; SILVA, H. S. A.; MELO, I. S.; NUNES, F. V.; BETTIOL, W. Bioprospecting endophytic bacteria for biological control of coffee leaf rust. Scientia Agricola, v. 63, n. 1, p. 32-39, 2006.
  29. SILVA, A.F.; PINTO, J.M.; FRANÇA, C.R.R.S; FERNANDES, S.C.; GOMES, T.C.A.; SILVA, M.S.L.; MATOS, A.N.B. Preparo e uso de biofertilizantes líquidos. 1ª Ed., CPATSA-EMBRAPA:Petrolina, Brasil. 2007. (Comunicado Técnico 130).
  30. SILVA, M.N.; PINTADO, M.E.; SARMENTO, B.; STAMFORD, N.P.; VASCONCELOS, M.W. A biofertilizer with diazotrophic bacteria and a filamentous fungus increases Pinus pinaster tolerance to the pinewood nematode (Bursaphelenchus xylophilus). Biological Control, v.132, p.72-80, 2019.
  31. SILVA, M.T.R.; CALANDRELLI, A.; RINALDI, L.K.; MIAMOTO, A.; MORENO, B.P.; COSTA, W.F.; SILVA, C.; ALBERTON, O.; DIAS-ARIEIRA, C.R. Arbuscular mycorrhizae maintain lemongrass citral levels and mitigate resistance despite root lesion nematode infection. Rhizosphere, v.19, p.1-9, 2021.
  32. SINGH, J.; FAULL, J.L. Antagonism and biological control. In: MUKERJI, K.G.; GARG, K.L. (Eds.) Biological Control of Plant Diseases, v.2. CRC Press: Boca Raton, FL., 1988. p.167-177.
  33. VALIATI, S.; FERRARI, E.; SHIOMI, H.F. Efeito de Isolados Bacterianos no Biocontrole ‘in vitro’ de Aspergillus sp. Scientific Electronic Archives, v.1, p.11-15, 2012.
  34. VOS, C.; SCHOUTEDEN, N.; VAN TUINEN, D.; CHATAGNIER, O.; ELSEN, A.; DE WAELE, D.; PANIS, B.; GIANINAZZI-PEARSON, V. Mycorrhiza-induced resistance against the rooteknot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Soil Biology & Biochemistry, v.60, p.45-54, 2013.
  35. VOS, C.; TESFAHUN, A.N.; PANIS, B.; DE WAELE, D.; ELSEN, A. Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Applied Soil Ecology, v.61, p.1-6, 2012.
  36. VOS, C.; VAN DEN BROUCKE, D.; LOMBI, F.M.; DE WAELE, D.; ELSEN, A. Mycorrhiza-induced resistance in banana acts on nematode host location and penetration. Soil Biology & Biochemistry, v.47, p.60-66, 2012.ALFENAS, A.C. et al. Clonagem e doenças do eucalipto. Viçosa: UFV,2.ed, 500p, 2009.

How to Cite

Shiomi, H. F., Faleiro, V. de O. ., Dreher, D. R. ., & Cely, M. V. T. . (2024). Biological control of banana nematodes by auxin-producing bacteria. Scientific Electronic Archives, 17(3). https://doi.org/10.36560/17320241905