Skip to main content Skip to main navigation menu Skip to site footer
Agricultural Science
Published: 2024-06-28

Sensitivity to desiccation in Copaifera langsdorffii seeds collected in the Northern Amazon of Mato Grossense and in a transition forest between the Cerrado and Amazon biomes

Universidade Federal de Mato grosso – Campus de Sinop
Universidade Federal de Mato Grosso - Campus de Sinop
Universidade Federal de Mato Grosso - Campus de Sinop
Universidade Federal de Mato Grosso - Campus de Sinop
orthodox, physiology, storage, viability

Abstract

The seeds are divided into three groups regarding their storage and desiccation capacity: orthodox, intermediate, and recalcitrant. The degree of desiccation tolerance is related to the seed ability to recover its biological functions when rehydrated after undergoing a dehydration process in the natural environment or otherwise. The aim of this work was to classify Copaiferalangsdorffii seeds in terms of desiccation and storage tolerance, determining whether the species has recalcitrant, intermediate, or orthodox seeds. The seeds were collected in the Rio Ronuro Ecological Station (riparian forest areas from Cerrado and Cerrado/Amazon transition) locate at Nova Ubiratã - MT, and the other collect was made at Sinop – MT (Amazon riparian forest area). After determining germination and initial water content, seed samples were placed in a sealed container with silica gel until reaching an approximate water content of 7%. Subsequently, the samples were stored during 90 days at -20ºC. After the desiccation and storage process, germination tests were conducted in a BOD-type germinator chamber at 30°C with a 12-hour photoperiod, using a gerbox and agar as substrate at a concentration of 0.06 g/L. The data were evaluated based on the final germination percentage. The results indicate that Copaiferalangsdorffii seeds can be physiologically classified as orthodox,withstanding desiccation up to approximately 7% water content, and storage for extended periods at negative temperatures.

References

  1. Ballesteros D, Fanega-Sleziak N, Davies RM. Cryopreservation of Seeds and Seed Embryos in Orthodox-, Intermediate-, and Recalcitrant-Seeded Species. Methods Mol Biol. 2021; 2180:663-682. doi: 10.1007/978-1-0716-0783-1_36. PMID: 32797442.
  2. BRASIL. MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO. 2009. Regras para análise de sementes. Ministério da Agricultura, Pecuária e Abastecimento, Secretaria de Defesa Agropecuária, Brasília, DF, Mapa/ ACS. 395p.
  3. Carvalho, L. R. de., Silva, E. A. A. da., & Davide, A. C.. (2006). Classificação de sementes florestais quanto ao comportamento no armazenamento. Revista Brasileira De Sementes, 28(2), 15–25. https://doi.org/10.1590/S0101-31222006000200003
  4. Colville, L. and Pritchard, H.W. (2019), Seed life span and food security. New Phytol, 224: 557-562. https://doi.org/10.1111/nph.16006
  5. Corrêa, B. J. S., Oliveira, L. M. de, Sá, A. C. S., Dambros, V. G., Delfes, L. da R., Lopes, B. C., & Souza, A. C. de. (2021). Sementes de Zanthoxylum rhoifolium Lam.: tolerância à secagem, ao armazenamento e ao descongelamento. Advances in Forestry Science, 7(4). https://doi.org/10.34062/afs.v7i4.10854
  6. Daws MI, Cleland H, Chmielarz P, Gorian F, Leprince O, Mullins CE, Thanos CA, Vandvik V, Pritchard HW. Variable desiccation tolerance in Acer pseudoplatanus seeds in relation to developmental conditions: a case of phenotypic recalcitrance? Funct Plant Biol. 2006 Feb;33(1):59-66. doi: 10.1071/FP04206. PMID: 32689214.
  7. Daws, M.I., Lydall, E., Chmielarz, P., Leprince, O., Matthews, S., Thanos, C.A. and Pritchard, H.W. (2004), Developmental heat sum influences recalcitrant seed traits in Aesculus hippocastanum across Europe. New Phytologist, 162: 157-166. https://doi.org/10.1111/j.1469-8137.2004.01012.x
  8. Daws MI, Gaméné CS, Glidewell SM, Pritchard HW. Seed mass variation potentially masks a single critical water content in recalcitrant seeds. Seed Science Research. 2004;14(2):185-195. doi:10.1079/SSR2004168
  9. de Almeida Garcia Rodrigues G, da Silva D, Ribeiro MI, Loaiza-Loaiza OA, Alcantara S, Komatsu RA, Barbedo CJ, Steiner N. What affects the desiccation tolerance threshold of Brazilian Eugenia (Myrtaceae) seeds? J Plant Res. 2022 Jul;135(4):579-591. doi: 10.1007/s10265-022-01396-7. Epub 2022 Jun 7. PMID: 35670888.
  10. De Vitis, M., Hay, F.R., Dickie, J.B., Trivedi, C., Choi, J. and Fiegener, R. (2020), Seed storage: maintaining seed viability and vigor for restoration use. Restor Ecol, 28: S249-S255. https://doi.org/10.1111/rec.13174
  11. Dussert S, Serret J, Bastos-Siqueira A, Morcillo F, Déchamp E, Rofidal V, Lashermes P, Etienne H, JOët T. Integrative analysis of the late maturation programme and desiccation tolerance mechanisms in intermediate coffee seeds. J Exp Bot. 2018 Mar 24;69(7):1583-1597. doi: 10.1093/jxb/erx492. PMID: 29361125; PMCID: PMC5888931.
  12. EMBRAPA. 2017. (Empresa Brasileira de Pesquisa Agropecuária) Estação meteorológica. https://www.embrapa.br/agrossilvipastoril/estacao-meteorologica. Acesso 07 fev. 2018.
  13. FONSECA, Fábio de Alcântara. Produção de mudas de Acacia mangium Wild. e Mimosa artemisiana Heringer & Paula em diferentes recipientes, utilizando compostos de resíduos urbanos, para a recuperação de áreas degradadas. 2005. 74 f. Dissertação (Mestrado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2005. https://tede.ufrrj.br/jspui/handle/tede/443
  14. HONG, T.D.; ELLIS, R.H.1996. A protocol to determine seed storange behaviour: Rome: IPGRI, 62p. (IPGRI. Techinical bulletim, 1).
  15. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA). (2010). Análise técnica do EIA/RIMA e de documentos correlatos referentes à UHE Teles Pires visando emissão de parecer quanto à viabilidade ambiental do empreendimento. Parecer Técnico No. 111/2010 – COHID/CGENE/DILIC/IBAMA. Brasília, 10 de dezembro de 2010. Processo No. 02001.006711/2008-79.
  16. Jacobs, B.S. and Lesmeister, S.A. (2012), Maternal environmental effects on fitness, morphology fruit and balistic seed dispersal distance in an annual forb. Ecologia Funcional, 26: 588-597. https://doi.org/10.1111/j.1365-2435.2012.01964.x
  17. Jing Y, Lang S, Wang D, Xue H, Wang XF. Functional characterization of galactinol synthase and raffinose synthase in desiccation tolerance acquisition in developing Arabidopsis seeds. J Plant Physiol. 2018 Nov;230:109-121. doi: 10.1016/j.jplph.2018.10.011. Epub 2018 Oct 17. PMID: 30368031.
  18. Lang S, Liu X, Xue H, Li X, Wang X. Functional characterization of BnHSFA4a as a heat shock transcription factor in controlling the re-establishment of desiccation tolerance in seeds. J Exp Bot. 2017 Apr 1;68(9):2361-2375. doi: 10.1093/jxb/erx097. PMID: 28369570.
  19. Leprince O, Pellizzaro A, Berriri S, Buitink J. Late seed maturation: drying without dying. J Exp Bot. 2017 Feb 1;68(4):827-841. doi: 10.1093/jxb/erw363. PMID: 28391329.
  20. Martins, J. R., Edvaldo, A. A. S., Alvarenga, A. A., Rodrigues, A. C., Ribeiro, D. E., & Toorop, P. E.. (2015). Seedling survival of Handroanthus impetiginosus (Mart ex DC) Mattos in a semi-arid environment through modified germination speed and post-germination desiccation tolerance. Brazilian Journal of Biology, 75(4), 812–820. https://doi.org/10.1590/1519-6984.23413
  21. Matilla, A.J. The Orthodox Dry Seeds Are Alive: A Clear Example of Desiccation Tolerance. Plants 2022, 11, 20. https://doi.org/10.3390/plants11010020
  22. Marimon Junior, B. H., & Haridasan, M.. (2005). Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil. Acta Botanica Brasilica, 19(4), 913–926. https://doi.org/10.1590/S0102-33062005000400026
  23. Mayrinck, R.C., Vilela, L.C., Pereira, T.M. et al. Seed desiccation tolerance/sensitivity of tree species from Brazilian biodiversity hotspots: considerations for conservation. Trees 33, 777–785 (2019). https://doi.org/10.1007/s00468-019-01815-8
  24. MELO JÚNIOR, J.C.F., BONA, C., & CECCANTINI, G. 2012. Anatomia foliar de Copaifera langsdorffii Desf. (Leguminosae): interpretações ecológicas em diferentes condições edáficas de Cerrado. Biotemas, 25(4), 29-36. https://doi.org/10.5007/2175-7925.2012v25n4p29
  25. Nery, M. C., Davide, A. C., Silva, E. A. A. da ., Soares, G. C. M., & Nery, F. C.. (2014). Classificação fisiológica de sementes florestais quanto a tolerância à dessecação e ao armazenamento. CERNE, 20(3), 477–483. https://doi.org/10.1590/01047760201420031450
  26. OLIVEIRA MORAES, K. N.; OLIVEIRA, F. N. L. de; BENTO, M. de C.; MESQUITA, A. G. G.; BRITO, R. S. de. Physiological classification of forest seeds for desiccation and storage tolerance. Revista Verde de Agroecologia e Desenvolvimento Sustentável, [S. l.], v. 15, n. 1, p. 01–05, 2020. DOI: 10.18378/rvads.v15i1.6625. Disponível em: https://www.gvaa.com.br/revista/index.php/RVADS/article/view/6625. Acesso em: 7 mar. 2024.
  27. Oliver MJ, Farrant JM, Hilhorst HWM, Mundree S, Williams B, Bewley JD. Desiccation Tolerance: Avoiding Cellular Damage During Drying and Rehydration. Annu Rev Plant Biol. 2020 Apr 29;71:435-460. doi: 10.1146/annurev-arplant-071219-105542. Epub 2020 Feb 10. PMID: 32040342.
  28. PEDRONI, F., SANCHEZ, M., & SANTOS, F. A. M.. (2002). Fenologia da copaíba (Copaifera langsdorffii Desf. -- Leguminosae, Caesalpinioideae) em uma floresta semidecídua no sudeste do Brasil. Brazilian Journal of Botany, 25(2), 183–194. https://doi.org/10.1590/S0100-84042002000200007
  29. Peng L, Huang X, Qi M, Pritchard HW, Xue H. Mechanistic insights derived from re-establishment of desiccation tolerance in germinating xerophytic seeds: Caragana korshinskii as an example. Front Plant Sci. 2022 Nov 7;13:1029997. doi: 10.3389/fpls.2022.1029997. PMID: 36420023; PMCID: PMC9677110.
  30. Pereira, W., Faria, J., Tonetti, O., & Silva, E.. (2014). Loss of desiccation tolerance in Copaifera langsdorffii Desf. seeds during germination. Brazilian Journal of Biology, 74(2), 501–508. https://doi.org/10.1590/1519-6984.19712
  31. PEREIRA, W.V.S.2011. Tolerância à dessecação em sementes de Copaifera langsdorffii e Tapirira obtusa. Dissertação de Mestrado – Universidade Federal de Lavras, 68p.
  32. PRIMACK, R.B.; RODRIGUES, E. 2001.Biologia da Conservação. Editora Planta, Londrina, 327p.
  33. ROBERTS, E.H. Predicting the storage life of seeds. Seed Science and Technology, Zürich, v.1, n. 3, p.499- 514, 1973.
  34. R. H. ELLIS, T. D. HONG, E.H. ROBERTS, An Intermediate Category of Seed Storage Behaviour? I. COFFEE, Journal of Experimental Botany, Volume 41, Issue 9, September 1990, Pages 1167–1174, https://doi.org/10.1093/jxb/41.9.1167
  35. SILVA, N.M. da; et. al. 2009. Monitoramento do desmatamento e focos de calor na Zona de Amortecimento da Estação Ecológica estadual do Rio Ronuro, Nova Ubiratã, Mato Grosso. Mato Grosso.
  36. SIQUEIRA, M. V. B. M., SILVÉRIO, G. H., CARLOS, J. S., TOLEDO, J. A. M., SILVA, C. J. D., PAULA-SOUZA, J. D., & GALASTRI, N. A.. (2023). Phenotypic plasticity in Copaifera langsdorffii Desf. in different forest fragments in São Paulo state, Brazil. Anais Da Academia Brasileira De Ciências, 95(1), e20210541. https://doi.org/10.1590/0001-3765202320210541
  37. Smolikova G, Leonova T, Vashurina N, Frolov A, Medvedev S. Desiccation Tolerance as the Basis of Long-Term Seed Viability. International Journal of Molecular Sciences. 2021; 22(1):101. https://doi.org/10.3390/ijms22010101
  38. Trusiak M, Plitta-Michalak BP, Michalak M. Choosing the Right Path for the Successful Storage of Seeds. Plants (Basel). 2022 Dec 23;12(1):72. doi: 10.3390/plants12010072. PMID: 36616200; PMCID: PMC9823941.
  39. W.V.S. Pereira, J.M.R. Faria, A.C. José, O.A.O. Tonetti, W. Ligterink, H.W.M. Hilhorst. Is the loss of desiccation tolerance in orthodox seeds affected by provenance? South African Journal of Botany, Volume 112, 2017, Pages 296-302, ISSN 0254-6299, https://doi.org/10.1016/j.sajb.2017.06.008.
  40. Wyse, S.V. and Dickie, J.B. (2017), Predicting the global incidence of seed desiccation sensitivity. J Ecol, 105: 1082-1093. https://doi.org/10.1111/1365-2745.12725

How to Cite

Wottrich, E. S., Vieira, C. V., Rodrigues, D. de J., & de Andrade, E. A. (2024). Sensitivity to desiccation in Copaifera langsdorffii seeds collected in the Northern Amazon of Mato Grossense and in a transition forest between the Cerrado and Amazon biomes. Scientific Electronic Archives, 17(4). https://doi.org/10.36560/17420241921