Ir para o conteúdo principal Ir para o menu de navegação principal Ir para o rodapé
Ciências Agrárias
Publicado: 2022-04-29

Acetylsalicylic acid (ASA) as inductor of growth and flowering in tomato

Instituto Federal do Espírito Santo
Instituto Federal do Espírito Santo
Instituto Federal do Espírito Santo
Universidade do Estado da Bahia
Universidade Federal de Viçosa
Instituto Federal do Espírito Santo
Instituto Federal do Espírito Santo
Acetylsalicylic acid, tomato

Resumo

Tomato growth and fruiting are regulated by the interaction between environmental and endogenous factors. Thus, the use of organic compounds in the proper dosage can contribute to accelerate growth, development and productivity of tomatoes. In this sense, the objective of this work was to evaluate the growth and flowering of tomato plants submitted to different concentrations of acetyl salicylic acid (ASA). The experiment was carried out with the cultivar Santa Cruz Kada in a completely randomized design with five replications and six treatments with concentrations 0, 5, 10, 15, 20 and 25 mmol L-1 of acetylsalicylic acid. The different concentrations of AAS in this study did not change the stem diameter, however, other characteristics were influenced by the ASA. Concentrations over 15.6 mmol L-1 reduced the emission of tomato leaves, however, there was an increasing response to the emission of flower buds, SPAD (Soil Plant Analysis Development) index and plant height.

Referências

  1. AGRIANUAL. AGRIANUAL 2015: Anuário da agricultura brasileira. São Paulo: FNP Consultoria. 472p., 2015. Available at: http://www.agrianual.com.br/. . Accessed on November 27, 2019.
  2. ASHRAF, M. et al. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Sciences. v.29, n.3, p.162-190, 2010. https://doi.org/10.1080/07352689.2010.483580
  3. BERNARDINO, F. et al. Alimentos fornecedores de proteínas no cabaz de alimentos do POAPMC: valor nutricional, conservação e utilização. Available at: https://repositorioaberto.up.pt/bitstream/10216/118043/2/305284.pdf. Accessed on November 17, 2021.
  4. BRITO NETO, et al. Crescimento e produção de mamoneira cultivar BRS Energia em função de doses de silício e ácido salicílico. In: CONGRESSO BRASILEIRO DE MAMONA. 5., SIMPÓSIO INTERNACIONAL DE OLEAGINOSAS ENERGÉTICAS. 2., FÓRUM CAPIXABA DE PINHÃO MANSO. 1., 2012. Guarapari, ES, Brasil. Anais [...] Guarapari: Embrapa Algodão, 2012.
  5. BUSATO, C. C. M. et al. Manejo da irrigação e fertirrigação com nitrogênio sobre as características químicas da videira ‘Niágara Rosada’. Ciência Rural, Santa Maria, v.41, n.7, p.1183-1188, 2011. DOI: https://doi.org/10.1590/S0103-84782011005000085
  6. CAMARGO FILHO, W. P.; CAMARGO, F. P. A quick review of the production and commercialization of the main vegetables in Brazil and the world from 1970 to 2015. Horticultura Brasileira, v.35, n.2, p.160-166, 2017. DOI: https://doi.org/10.1590/S0102-053620170202
  7. DROGOUDI, P.; PANTELIDIS, G. E.; VEKIARI, S. A. Physiological Disorders and Fruit Quality Attributes in Pomegranate: Effects of Meteorological Parameters, Canopy Position and Acetylsalicylic Acid Foliar Sprays. Frontiers in Plant Science, v.12, 2021. https://doi.org/10.3389/fpls.2021.645547.
  8. FARIAS, A. T. de. Crescimento e desenvolvimento do algodoeiro em função de doses de silício e ácido salicílico. Orientadora: Fabiana Xavier Costa. 2012. 66f. Dissertação (Mestrado em Ciências Agrárias) – Universidade Estadual da Paraíba, Campina Grande, Paraíba, 2012.
  9. FARIDUDDIN, Q.; HAYAT, S.; AHMAD, A. Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica, n.41, p.281–284, 2003. Available at: https://link.springer.com/content/pdf/10.1023/B:PHOT.0000011962.05991.6c.pdf. Accessed on May 01, 2021.
  10. FAROOQ, M. et al. Drought stress: comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. Journal of Agronomy and Crop Science, v.196, n.5, p.336-345, 2010. https://doi.org/10.1111/j.1439-037X.2010.00422.x
  11. FIALHO, A. et al. Influência do ácido acetilsalicílico na emergência e na indução à resistência ao déficit hídrico em Annona squamosa. Brazilian Journal of Development, v.5, n.10, p.17356-17363, 2019. DOI: https://doi.org/10.34117/bjdv5n10-015
  12. GALLEGO-GIRALDO, L. et al. Salicylic acid mediates the reduced growth of lignin own-regulated plants. Proceedings of the National Academy of Sciences of the United States of America, Washington, v.108, n.51, p.20814-20819, 2011. DOI: https://doi.org/10.1073/pnas.1117873108.
  13. GHASEMZADEH, A.; JAAFAR, H. Z. E. Interactive Effect of Salicylic Acid on Some Physiological Features and Antioxidant Enzymes Activity in Ginger (Zingiber officinale Roscoe). Molecules, Basel, v. 18, p. 5965-5979, 2013. DOI: https://doi.org/10.3390/molecules18055965.
  14. HAYAT, S. et al. Salicylic acids: Local, systemic or inter-systemic regulators? Plant Signaling & Behavior 7:93–102, 2012. DOI: https://doi.org/10.4161/psb.7.1.18620
  15. HUSSAIN, I. et al.. Applied acetylsalicylic acid induced growth and key-biochemical changes in chickpea (cicer arietinum l.) under drought stress. Dose-Response: An International Journal, v.18, n.4, p.1-13, 2020. DOI: https://doi.org/10.1177/1559325820956801.
  16. IBGE. Levantamento Sistemático da Produção Agrícola – Março de 2021. 2021. Available at https://sidra.ibge.gov.br/home/lspa/brasil. Accessed on April 20, 2021.
  17. JANDA, T.; GONDOR, O. K.; YORDAVA, R.; SZALAI, G. PÁL, M. Salicylic acid and photosynthesis: signalling and effects. Acta physiologiae plantarum, v. 36, n. 10, p.2537-2546, 2014. DOI https://doi.org/10.1007/s11738-014-1620-y
  18. KABIRI, R.; NAGHIZADEH, M. Exogenous acetylsalicylic acid stimulates physiological changes to improve growth, yield and yield components of barley under water stress condition. Journal of Plant Physiology & Breeding, v.5, n.1, p.35-45. 2015. Available at https://breeding.tabrizu.ac.ir/article_3795_0bc4d625854ecebf757d0e7c36c21c69.pdf. Accessed on November 15, 2021.
  19. KARLIDAG, H.; YILDIRIM, E.; TURAN, M. Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Scientia Agricola, v. 66, n. 2, p. 180-187, 2009. Available at https://www.scielo.br/j/sa/a/5tXHYGWcLGfCBzn3pnzZkpK/?format=pdf&lang=en. Accessed on December 30, 2021.
  20. KHAN, W.; PRITHIVIRA, J. B.; SMITH, D.L. Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology 160:485–492, 2003. Available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.597.9545&rep=rep1&type=pdf. Accessed on December 30, 2021.
  21. KHODARY, S.E.A. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. International Journal of Agriculture and Biology, v.6, p.5-8, 2004. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.322.9285&rep=rep1&type=pdf. Accessed on December 30, 2021.
  22. KOO, Y. M.; HEO, A. Y.; CHOI, H. W. Salicylic acid as a safe plant protector and growth regulator. The plant pathology journal, v.36, v.1, 2020. DOI: https://doi.org/10.5423/PPJ.RW.12.2019.0295
  23. LIU, C. et al. Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings. Plant and Soil, v.344, p.131-141, 2011. DOI: https://doi.org/10.1007/s11104-011-0733-y.
  24. MAROUELLI, W.A.; SILVA, H.R.; SILVA, W.L.C. Irrigação do tomateiro para processamento. Brasília: Embrapa Hortaliças 24p. 2012.
  25. MARTIN-MEX, R. et al. Efecto positivo de aplicaciones de ácido salicílico en la productividad de papaya (Carica papaya). Revista Mexicana de Ciencias Agrícolas. Texcoco, v.3, n.8, p.1637-1643, dic. 2012. Available at: http://www.scielo.org.mx/pdf/remexca/v3n8/v3n8a13.pdf. Accessed on December 10, 2021.
  26. NIVEDITHADEVI, D.; SOMASUNDARAM, R.; PANNERSELVAM, R. Effect of abscisic acid, paclobutrazol and salicylic acid on the growth and pigment variation in Solanum Trilobatum. International Journal of Drug Development e Research, n. 3, v. 4, p. 236-246, 2012. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.819.6710&rep=rep1&type=pdf. Accessed on December 17, 2020.
  27. PORTO, J. S. et al. Índice SPAD e crescimento do tomateiro em função de diferentes fontes e doses de nitrogênio. Scientia Plena, v.10, 110203. 2014. Available at: https://www.scientiaplena.org.br/sp/article/view/2041/1081. Accessed on July 15, 2021.
  28. PREZOTI, L. C. et al. Manual de recomendação de calagem e adubação para o Estado do Espirito Santo: quinta aproximação. Vitória, ES : SEEA; Incaper; CEDAGRO, 2007. 301 p.
  29. R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. 2019. Available at: <http://www.R-project.org/>. Accessed on February 30, 2020.
  30. RIVAS-SAN VICENTE, M.; PLASENCIA, J. Salicylic acid beyond defence: its role in plant growth and development. Journal of experimental botany, v.62, n.10, p.3321-3338. 2011. DOI: https://doi.org/10.1093/jxb/err031
  31. SALES, R. A. et al. Sazonal and interanual rainfall variability for Colatina, Espirito Santo, Brazil. Scientia Agraria, Curitiba, v.19, n. 2, p.186-196, 2018. DOI: http://dx.doi.org/10.5380/rsa.v19i2.54244
  32. SOLIMAN, M. H. et al. Acetylsalicylic acid enhance tolerance of Phaseolus vulgaris L. to chilling stress, improving photosynthesis, antioxidants and expression of cold stress responsive genes. Botanical Studies, v.59, n.6, p.1-17, 2018. https://doi.org/10.1186/s40529-018-0222-1.
  33. SOUSA, E. G. de et al. Aplicação foliar de ácido acetilsalicílico no manjericão irrigado com água salina:. In: Robson José de Oliveira. (Org.). Aplicação foliar de ácido acetilsalicílico no manjericão irrigado com água salina:. 1ed.São Paulo: EDITORA CIENTÍFICA DIGITAL, p. 43-47. 2020.
  34. TAIZ, L., ZEIGER, E., MOLLER, I. M., MURPHY, A. Fisiologia e desenvolvimento vegetal. Artmed Editora, 2017.
  35. TREICHEL, M. Anuário brasileiro do tomate 2016/ Michelle Treichel ... [et al.] Santa Cruz do Sul: Editora Gazeta Santa Cruz, 2016. 84 p. :il.
  36. VINEETH, T. V. et al. Optimization of bio-regulators dose based on photosynthetic and yield performance of chickpea (Cicer arietinum L.) genotypes. Indian Journal of Plant Physiology, v. 20, n. 2, p. 177-181, 2015. DOI: https://doi.org/10.1007/s40502-015-0150-y.
  37. .

Como Citar

Barroso , A. A. A. ., Marré, K. G. ., Almeida, R. F. de . ., Silva, M. A. V., Sales , R. A. de ., Belmiro , S. L. ., & Oliveira, E. C. de . (2022). Acetylsalicylic acid (ASA) as inductor of growth and flowering in tomato. Scientific Electronic Archives, 15(5). https://doi.org/10.36560/15520221540