Skip to main content Skip to main navigation menu Skip to site footer
Health Science
Published: 2024-08-06

Clinical-epidemiological profile of pregnant from a city in the north of Mato Grosso and aplication of a new computational model for monitoring its heath: a prospective cohort study

Escola Técnica Estadual de Educação Profissional e Tecnológica de Sinop
Escola Técnica Estadual de Educação Profissional e Tecnológica de Sinop
Escola Técnica Estadual de Educação Profissional e Tecnológica de Sinop/MT
Escola Técnica Estadual de Educação Profissional e Tecnológica de Sinop
Universidade Federal de Mato Grosso, Campus de Sinop
Unifasipe Centro Universitário, Unidade Florença
Escola Técnica Estadual de Educação Profissional e Tecnológica de Sinop/MT
Escola Técnica Estadual de Educação Profissional e Tecnológica de Sinop
Universidade Federal de Mato Grosso, Campus de Sinop
Escola Técnica Estadual de Educação Profissional e Tecnológica de Sinop
Pregnancy Overweight Obesity Gestational diabetes mellitus Physical exercise

Abstract

Studies have demonstrating that overweight/obesity increases the risk of maternal and neonatal complications, and the risk of gestational diabetes mellitus (GDM), gestational arterial hypertension (GAH), pre-eclampsia, eclampsia, premature birth, among others. Thus, the objective of the present work was to analyze the clinical-epidemiological profile of a sample of overweight/obese pregnant women from Sinop, Mato Grosso (MT), and apply a computational model to these pregnant women to encourage the practice of physical activity and the notification of signs and symptoms through a wearable device and chatbot. This is a prospective cohort study carried out at the Escola Técnica Estadual de Sinop. The pregnant were monitored through blood tests, weight and blood pressure measurement, and encouraged to perform physical activity and were advised on how to monitor it using a wearable device and chatbot. The inclusion criteria were pregnant, attended by two Basic Health Units in Sinop-MT, with a single pregnancy and in the second trimester from March to May 2023. The results demonstrated that the majority of pregnant are 26 years old, are married, Hispanic, presented overweight/obesity and are sedentary. Blood pressures were within reference values ​​for normal pressure; 7 pregnant presented anemia, 4 had hematological changes suggestive of an inflammatory response and 12 pregnant had urinary tract infections. Regarding maternal and neonatal complications, 4 pregnant presented GDM and 1 had HAG, 1 neonate was macrosomic and 1 was large for gestational age (LGA), all of whom were in the overweight/obesity group. Even so, 94.4% of pregnant used the wearable device to control daily steps and/or practice physical activity, with 2,938,468 steps recorded in 800 records, equivalent to an average of 3,673 steps in each recorded record. In conclusion, it was observed that the overweight/obesity is closely related to unfavorable maternal-fetal outcomes with a higher percentage of pregnant presenting GDM and GAH, and that the use of the wearable device was effective in encouraging the practice of physical activity and reporting the signs and symptoms of pregnant.

References

  1. ABBADE, E. B. Evolução da obesidade e doenças crônicas não transmissíveis nas populações das capitais do Brasil entre 2006 e 2018. Medicina (Ribeirão Preto), v. 54, n. 1, p. e171413, 2 ago. 2021.
  2. ABESO. Mapa da obesidade. Disponível em: <https://abeso.org.br/obesidade-e-sindrome-metabolica/mapa-da-obesidade/>.
  3. AVGERINOS, K. I. et al. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism: Clinical and Experimental, v. 92, p. 121–135, 1 mar. 2019.
  4. BODEN, G. Role of Fatty Acids in the Pathogenesis of Insulin Resistance and NIDDM. Diabetes, v. 46, n. 1, p. 3–10, 1 jan. 1997.
  5. BOLOGNANI, C. V.; SOUZA, S. S. DE; CALDERON, I. DE M. P. Diabetes mellitus gestacional - enfoque nos novos critérios diagnósticos. Com. Ciências Saúde, v. 22, n. 1, p. S31–S42, 2011.
  6. BRAGA, C. P. et al. Relação do ganho de peso, antes e durante a gravidez, com a macrossomia fetal em gestações complicadas pelo diabetes gestacional e hiperglicemia leve. Nutrire Rev. Soc. Bras. Aliment. Nutr, v. 36, n. 1, p. 85–98, abr. 2011.
  7. CALLAWAY, L. K. et al. The prevalence and impact of overweight and obesity in an Australian obstetric population. Medical Journal of Australia, v. 184, n. 2, p. 56–59, 2006.
  8. CALLE, E. E.; KAAKS, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nature reviews. Cancer, v. 4, n. 8, p. 579–91, ago. 2004.
  9. CHAIX, B. et al. When Chatbots Meet Patients: One-Year Prospective Study of Conversations Between Patients With Breast Cancer and a Chatbot. JMIR Cancer, v. 5, n. 1, p. e12856, 2019.
  10. CHOOI, Y. C.; DING, C.; MAGKOS, F. The epidemiology of obesity. Metabolism, v. 92, p. 6–10, 2019.
  11. CHOUDHURY, A. A.; DEVI RAJESWARI, V. Gestational diabetes mellitus - A metabolic and reproductive disorder. Biomedicine & Pharmacotherapy, v. 143, p. 112183, nov. 2021.
  12. CMACE/RCOG. CMACE/RCOG joint guideline: Management of women with obesity in pregnancy.
  13. DANIELI-GRUBER, S. et al. Outcome of preterm infants born to overweight and obese mothers†. The Journal of Maternal-Fetal & Neonatal Medicine, v. 30, n. 4, p. 402–405, 16 fev. 2017.
  14. ENTRINGER, S. et al. Ecological Momentary Assessment of Maternal Cortisol Profiles Over a Multiple-Day Period Predicts the Length of Human Gestation. Psychosomatic Medicine, v. 73, n. 6, p. 469–474, jul. 2011.
  15. FACCHI, J. C. et al. Perinatal programming of metabolic diseases: The role of glucocorticoids. Metabolism, v. 104, p. 154047, mar. 2020.
  16. FERRARI, N.; JOISTEN, C. Impact of physical activity on course and outcome of pregnancy from pre- to postnatal. European Journal of Clinical Nutrition, v. 75, n. 12, p. 1698–1709, 7 dez. 2021.
  17. FITZPATRICK, K. K.; DARCY, A.; VIERHILE, M. Delivering Cognitive Behavior Therapy to Young Adults With Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial. JMIR Mental Health, v. 4, n. 2, p. e19, 2017.
  18. FUCHS, F. et al. Impact of maternal obesity on the incidence of pregnancy complications in France and Canada. Scientific reports, v. 7, n. 1, p. 10859, set. 2017.
  19. GONÇALVES, R. et al. Avaliação da efetividade da assistência pré-natal de uma Unidade de Saúde da Família em um município da Grande São Paulo. Revista Brasileira de Enfermagem, v. 61, n. 3, p. 349–353, jun. 2008.
  20. GREER, S. et al. Use of the chatbot “vivibot” to deliver positive psychology skills and promote well-being among young people after cancer treatment: Randomized controlled feasibility trial. JMIR mHealth and uHealth, v. 7, n. 10, p. 1–13, 2019.
  21. GUIMARÃES, W. S. G. et al. Acesso e qualidade da atenção pré-natal na Estratégia Saúde da Família: infraestrutura, cuidado e gestão. Cadernos de Saúde Pública, v. 34, n. 5, p. e00110417, 10 maio 2018.
  22. HAAKSTAD, L. A. H.; BØ, K. Effect of regular exercise on prevention of excessive weight gain in pregnancy: A randomised controlled trial. The European Journal of Contraception & Reproductive Health Care, v. 16, n. 2, p. 116–125, abr. 2011.
  23. HAUSER-ULRICH, S. et al. A smartphone-based health care chatbot to promote self-management of chronic pain (SELMA): Pilot randomized controlled trial. JMIR mHealth and uHealth, v. 8, n. 4, 2020.
  24. HE, J. et al. The experiences of pregnant women with gestational diabetes mellitus: a systematic review of qualitative evidence. Reviews in Endocrine and Metabolic Disorders, v. 22, n. 4, p. 777–787, 12 dez. 2021.
  25. HOLMES, S. et al. Usability testing of a healthcare chatbot: Can we use conventional methods to assess conversational user interfaces? ECCE 2019 - Proceedings of the 31st European Conference on Cognitive Ergonomics: “‘Design for Cognition’”, p. 207–214, 2019.
  26. IBGE, I. B. DE G. E E. Síntese de indicadores sociais: uma análise das condições de vida da população brasileira. Disponível em: <https://agenciadenoticias.ibge.gov.br/media/com_mediaibge/arquivos/070903d82038130a93f0374ada39f81d.pdf>. Acesso em: 22 jan. 2024.
  27. IBGE, I. B. DE G. E E. IBGE. Disponível em: <https://www.ibge.gov.br/cidades-e-estados/mt/sinop.html>. Acesso em: 22 jan. 2024.
  28. INKSTER, B.; SARDA, S.; SUBRAMANIAN, V. An empathy-driven, conversational artificial intelligence agent (Wysa) for digital mental well-being: Real-world data evaluation mixed-methods study. JMIR mHealth and uHealth, v. 6, n. 11, p. 1–14, 2018.
  29. KATAOKA, Y. et al. Development and Early Feasibility of Chatbots for Educating Patients With Lung Cancer and Their Caregivers in Japan: Mixed Methods Study. JMIR Cancer, v. 7, n. 1, p. e26911, 2021.
  30. KOPELMAN, P.; GEORGE, S. Obesity as a medical problem. Nature, v. 404, p. 635–643, 2000.
  31. KUMAR, A.; CHAUDHARY, K.; PRASAD, S. Maternal indicators and obstetric outcome in the north Indian population: a hospital-based study. Journal of postgraduate medicine, v. 56, n. 3, p. 192–195, 2010.
  32. KUMARI, P. et al. Association between high maternal body mass index and feto-maternal outcome. Journal of Obesity and Metabolic Research, v. 1, n. 3, p. 143–148, jul. 2014.
  33. LEUNG, T. Y. et al. Trends in maternal obesity and associated risks of adverse pregnancy outcomes in a population of Chinese women. BJOG: An International Journal of Obstetrics and Gynaecology, v. 115, n. 12, p. 1529–1537, 2008.
  34. LIU, L.; HONG, Z.; ZHANG, L. Associations of prepregnancy body mass index and gestational weight gain with pregnancy outcomes in nulliparous women delivering single live babies. Scientific reports, v. 5, p. 12863, 2015.
  35. MARTIN-RODRIGUEZ, E. et al. Comorbidity associated with obesity in a large population: The APNA study. Obesity research & clinical practice, v. 9, n. 5, p. 435–447, 2015.
  36. MILNE-IVES, M. et al. The Effectiveness of Artificial Intelligence Conversational Agents in Health Care: Systematic Review. Journal of Medical Internet Research, v. 22, n. 10, 2020.
  37. MONTEIRO, C. A.; LOUZADA, M. L. DA C. Ultraprocessamento de alimentos e doenças crônicas não transmissíveis: implicações para políticas públicas . In: NOGUEIRA, R. P. et al. (Eds.). . Observatório internacional de capacidades humanas, desenvolvimento e políticas públicas: estudos e análises 2. . Brasília: Organização Pan-Americana da Saúde, 2015. p. 18.
  38. MUKTABHANT, B. et al. Diet or exercise, or both, for preventing excessive weight gain in pregnancy. Cochrane Database of Systematic Reviews, v. 2015, n. 6, 15 jun. 2015.
  39. NOBREGA, A. A. DA et al. Mortalidade perinatal no Brasil em 2018: análise epidemiológica segundo a classificação de Wiggleworth modificada. Cadernos de Saúde Pública, v. 38, n. 1, p. e00003121, 2022.
  40. OH, J. et al. Efficacy of mobile app-based interactive cognitive behavioral therapy using a chatbot for panic disorder. International Journal of Medical Informatics, v. 140, n. January, p. 104171, 2020.
  41. ORAKA, C. S. O. et al. Race and obesity in the black female population: a scoping review. Saúde Soc. São Paulo, v. 29, n. 3, p. e191003, 2020.
  42. OVESEN, P. G. et al. Maternal and neonatal outcomes in pregnancies complicated by gestational diabetes. a nation-wide study. J Matern Fetal Neonatal Med, v. 28, n. 14, p. 1720–1724, 2015.
  43. PIAU, A. et al. A smartphone Chatbot application to optimize monitoring of older patients with cancer. International Journal of Medical Informatics, v. 128, n. April, p. 18–23, 2019.
  44. PICCININI, C. A. et al. Gestação e a constituição da maternidade. Psicologia em estudo, v. 13, p. 63–72, 2008.
  45. PINHEIRO, L. G. V. et al. Obesidade, gestação e complicações maternas e neonatais: uma revisão sistemática. Scientific Electronic Archives, v. 16, n. 4, p. 68–85, 2023.
  46. PINHEIRO, L. G. V. et al. Obesity Increases Maternal Complications in Pregnant Women of Sinop: A Retrospective Cohort Study. Obesities, v. 4, n. 2, p. 118–131, 29 maio 2024.
  47. QUEIROZ, D. A. DE et al. A wearable chatbot-based model for monitoring colorectal cancer patients in the active phase of treatment. Healthcare Analytics, v. 4, p. 100257, dez. 2023.
  48. QUEIROZ, E. A. I. F. et al. Obesidade e câncer: mecanismos envolvidos e intervenções terapêuticas. Scientific Electronic Archives, v. 15, n. 3, p. 30–56, 28 fev. 2022.
  49. RENAULT, K. M. et al. The Treatment of Obese Pregnant Women (TOP) study: a randomized controlled trial of the effect of physical activity intervention assessed by pedometer with or without dietary intervention in obese pregnant women. American Journal of Obstetrics and Gynecology, v. 210, n. 2, p. 134.e1-134.e9, fev. 2014.
  50. SAHA, D. et al. MATERNAL BMI- HOW IT AFFECT OBSTETRIC BEHAVIOUR AND PREGNANCY OUTCOME. Journal of Evolution of Medical and Dental Sciences, v. 2, n. 35, p. 6622–6630, 2013.
  51. SALTIEL, A. R.; KAHN, C. R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature, v. 414, n. 6865, p. 799–806, 13 dez. 2001.
  52. SATO, E. I. et al. Atualização Terapêutica de Felício Cintra do Prado, Jairo de Almeida Ramos, José Ribeiro do Valle: Diagnóstico e Tratamento. . 26. ed. [s.l.] Artes Médicas, 2017. v. 1
  53. SCHERER, P. E. Adipose Tissue. Diabetes, v. 55, n. 6, p. 1537–1545, 1 jun. 2006.
  54. SILVA, L. S. DA et al. ANÁLISE DAS MUDANÇAS FISIOLÓGICAS DURANTE A GESTAÇÃO: DESVENDANDO MITOS. Revista Eletrônica Faculdade Montes Belos, v. 8, n. 2, p. 1–6, 2015.
  55. STEVANATO, K. P. et al. Fatores associados ao ganho de peso na gestação e seus desfechos. Research, Society and Development, v. 9, n. 11, p. e2699119825, 13 nov. 2020.
  56. SUN, Y. et al. Effects of pre-pregnancy body mass index and gestational weight gain on maternal and infant complications. BMC Pregnancy and Childbirth 2020 20:1, v. 20, n. 1, p. 1–13, jul. 2020.
  57. SZYHTA, C. C. et al. Fatores de risco para óbito perinatal em gestantes de alto risco de um hospital terciário de Curitiba-PR, Brasil: estudo caso-controle. Ciência & Saúde Coletiva, v. 28, n. 4, p. 1043–1058, abr. 2023.
  58. TILG, H.; MOSCHEN, A. R. Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nature Reviews Immunology, v. 6, n. 10, p. 772–783, 2006.
  59. VARGAS, T. G. V.; MEDEIROS, R. J.; PERES, M. SÍNDROME METABÓLICA E GRAVIDEZ: UMA REVISÃO BIBLIOGRÁFICA. São José do Rio Preto: Faculdade FACERE, 2016.
  60. VÍTOLO, M. R.; BUENO, M. S. F.; GAMA, C. M. Impacto de um programa de orientação dietética sobre a velocidade de ganho de peso de gestantes atendidas em unidades de saúde. Rev. Bras. Ginecol. Obstet., v. 33, n. 1, p. 13–19, jan. 2011.
  61. WIZEL, M. The Secrets to a Healthy Pregnancy. 1. ed. Houston: Lucid Books, 2014. v. 1
  62. ZUTSHI, A. et al. Implications of Early Pregnancy Obesity on Maternal, Fetal and Neonatal Health Retrospective cohort study from Oman. Sultan Qaboos Univ Med J, v. 18, n. 1, p. e47–e53, 2018.

How to Cite

Kasecker, W. A. C., Silva, M. H. P. da, Santana, F. S. de, Silva, L. da, Sanches, N. M., Florentino, J. M. P., … Queiroz, D. A. de. (2024). Clinical-epidemiological profile of pregnant from a city in the north of Mato Grosso and aplication of a new computational model for monitoring its heath: a prospective cohort study. Scientific Electronic Archives, 17(4). https://doi.org/10.36560/17420241983