Resumo
O uso de drones na pulverização agrícola está se tornando uma alternativa sustentável e eficiente em comparação aos métodos tradicionais. A pulverização aérea com drones oferece várias vantagens, incluindo maior uniformidade na aplicação de produtos químicos, menor impacto ambiental e redução de danos às culturas. Além disso, os drones podem operar em áreas de difícil acesso, otimizando o tempo e minimizando a exposição dos trabalhadores a substâncias tóxicas. Essa tecnologia utiliza sensores e câmeras multiespectrais para ajustar a quantidade e o tipo de produto aplicado, aumentando a precisão e reduzindo o uso excessivo de insumos. Estudos destacam que a pulverização por drones reduz significativamente a deriva de pesticidas, garantindo uma aplicação mais controlada e diminuindo o risco de contaminação ambiental. A eficiência energética também é uma vantagem, com a diminuição do consumo de água e produtos químicos. Contudo, a implementação de drones enfrenta desafios, como a curta duração da bateria, limitações regulatórias e a necessidade de infraestrutura tecnológica para processar grandes volumes de dados. Condições climáticas adversas também podem afetar a operação dos drones, impactando a eficácia da pulverização. No geral, a adoção de drones na agricultura representa um avanço significativo rumo a práticas mais seguras e sustentáveis, mas ainda requer ajustes e regulamentações específicas para maximizar sua eficiência.
Drone, pulverização agrícola, eficiência, insumos agricolas
Referências
- ANEJA M, CHOPRA S. Precision Agriculture: A Sustainable Approach for Smart Farming. (org) In Wireless Sensor Networks: Theory to Applications. Academic Press. p. 81-101, 2019
- BENSON, A. Drones in Agriculture: Implications of a New FAA Decision for Aerial Imagery. Farm Journal, 2016.
- BORYSENKO, A. A. ANTONENKO, A. M. OMELCHUK, S. T. et al. rationale for recommendations for safe aerial application of pesticides used by unmanned aerial vehicles (uav). National Medical University Bulletin. Vinnytsia. v. 27, 2023.
- BORYSENKO, A. ANTONENKO, A. OMELCHUK, S. BILOUS, S. MELNYCHUK, F. Ecological and hygienic assessment and regulation of innovative technology of pesticide application by means of unmanned aerial vehicles. Rawal Medical Journal, n. 47, v. 1, p. 213-213, 2022.
- DAYANA, K. RAMESH, T. AVUDAITHAI, S. SEBASTIAN, S. P. RATHIKA, S. Feasibility of using drone for foliar nutrient spraying in irrigated greengram. Ecology, Environment and Conservation v. 28, p. 548–553, 2022.
- DENGERU, Y. et al. Study on spray deposition and drift characteristics of UAV agricultural sprayer for application of insecticide in redgram crop (Cajanus cajan L. Millsp.). Agronomy, v. 12, 2022. DOI: 10.3390/agronomy12123196.
- DE SCHAMPHELEIRE, M. NUYTTENS, D. BAETENS, K. CORNELIS, W. GABRIELS, D. SPANOGHE, P. Effects of pesticide spray drift on the physicochemical properties of the spray solution. Precise. Ag, v.10, p, 409–420. 2009
- DI GENNARO, S. F.; TOSCANO, P.; GATTI, M.; PONI, S.; BERTON, A.; MATESE, A. Spectral comparison of UAV-Based hyper and multispectral cameras for precision viticulture. Remote Sensing, v. 14, n. 3, p. 449, 2022.
- DOGGALLI, G. SANTHOSHINII, E. MANOJKUMAR, H. G. SRIVASTAVA, M. GANESH, H. S. BARIGAL, A. ANITHAA, V. AMEEN, A. KUNDU, R. Drone Technology for Crop Disease Resistance: Innovations and Challenges. Sci. Res. Rep., vol. 30, no. 8, pp. 174-180, 2024
- EL-ZAEMEY, S.; HEYWORTH, J.; FRITSCHI, L. Noticing pesticide spray drift from agricultural pesticide application areas and breast cancer: a case-control study. Australian and New Zealand Journal of Public Health, v. 37, n. 6, p. 547-555, 2013. DOI: https://doi.org/10.1111/1753-6405.12111.
- FILHO F H. L. HELDENS, W. B. KONG, Z. D. E LANGE, E. S. Drones: Innovative Technology for Use in Precision Pest Management. Journal of Economic Entomology. n. 1, v. 113, p. 1-25, 2019.
- FURTADO, R. D.; HOFF, R. B. Pátio de descontaminação de aeronaves agrícolas Evolução técnica e legal 1. p. 74–85, 2017.
- História da aviação agrícola, Ministério da Agricultura e Pecuária (MAPA), disponível em. https://encurtador.com.br/8eGHQ. Acesso em 20 set, 2024.
- JIANG, X. ZHANG, C. YANG, C. et al. Plant disease identification method based on deep learning and convolutional neural network. In 4th International Conference on Computer and Communication Systems (ICCCS). P. 659-663, 2019.
- JOMANTAS, T. et al. The Influence of Newly Developed Spray Drift Reduction Agents on Drift Mitigation by Means of Wind Tunnel and Field Evaluation Methods. Agriculture, v. 13, n. 2, 349, 2023. DOI: https://doi.org/10.3390/agriculture13020349
- KAMILARIS, A. et al. A review on the use of unmanned aerial vehicles and artificial intelligence to study crop growth in precision agriculture. Computers and Electronics in Agriculture. v. 147, p. 128-141, 2018.
- LAN, Y.; CHEN, S.; FRITZ, B. K. Current status and future trends of precision agricultural aviation technologies. International Journal of Agricultural and Biological Engineering, v. 10, n. 3, p. 1-17, 2017. DOI: https://doi.org/10.3965/j.ijabe.20171003.3088
- LEE, C. H. S. PHANG, S. K. MUN, H. K. Design and Implementation of Agriculture UAV with optimized spray mechanism. MATEC Web of Conferences. Subang Jaya. v. 335, p. 1-18, 2021.
- LIU, Y. et al. Assessment of spray deposition and losses in an apple orchard with an unmanned agricultural aircraft system in China. Transactions of the ASABE, v. 63, p. 619–627, 2020. DOI: 10.13031/TRANS.13233.
- LI, L. et al. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Frontiers in Plant Science, v. 13, 2022. DOI: 10.3389/fpls.2022.981494.
- LOWENBERG-DEBOER J, ERICKSON B. Setting the record straight on precision agriculture adoption. ,Agronomy Journal. 2019 n. 111, v. 4, p. 1552-1569, 2019.
- NIKAM, R. K. NADKAR, A. U. PRAJAPATI. Development of agricultural spraying drone. International Journal of Scientific Research in Engineering and Management. v. 8, p. 1-6, 2024.
- PAUL, R. A. ARTHANARI, P. M. PAZHANIVELAN, S. KAVITHA, R. E. DJANAGUIRAMAN, Drone-based herbicide application for energy saving, enhanced weed control and cost-effectiveness in direct-seeded rice. The Indian Journal of Agricultural Sciences. n, 7. v. 93. p.04–09, 2023
- PEREIRA, A. S, SHITSUKA, D. M, PARREIRA, F. J. SHITSUKA, R. Metodologia da Pesquisa Científica. [e-book]. Santa Maria. Ed. 1, UAB/NTE/UFSM, 2018.
- RAGIMAN, S. et al., Evaluation of pesticide mixtures for Unmanned Aerial Spraying in Rice: The Physical Compatibility Perspective. Internal. j. Environment. Climate. Change, Hyderabad v. 13, n. 9, p. 2848-2858, 2023.
- RAMESH, T. MADHUSREE, S. RATHIKA, S. MEENA, S. RAJA, K. Drone based herbicide application in greengram (Vigna radiata). The Indian Journal of Agricultural Sciences. Delhi, India, v. 94, n. 3, p. 329–332, 2024. DOI: 10.56093/ijas.v94i3.144541
- SARRI, D. et al. Testing a multi-rotor unmanned aerial vehicle for spray application in high slope terraced vineyard. Journal of Agricultural Engineering, v. 50, p. 38–47, 2019. DOI: 10.4081/jae.2019.853.
- RANA, M. A. Reshaping agriculture using the nuclear techniques. The Pakistan case. Agricultural Science, n. 9, v. 9, p. 1168-1172, 2018.
- SADHANA, B. NAIK, G. MYTHRI, R. J. HEDGE, P. G. SHYAMA, K. S. B. Development of quad copter based pesticide spraying mechanism for agricultural applications. Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng. n. 5, v. 2, p, 121-123. 2017.
- SAURA, J. R.; REYES-MENENDEZ, A.; PALOS-SANCHEZ, P. Mapping multispectral Digital Images using a Cloud Computing software: applications from UAV images. Heliyon, v. 5, n. 2, 2019.
- SANCHEZ-FERNANDEZ, L.; BARRERA-BAEZ, M.; MARTÍNEZ-GUANTER, J.; PEREZ-RUIZ, M. Reducing environmental exposure to PPPs in super-high density olive orchards using UAV sprayers. Frontiers in Plant Science, v. 14, 2024. DOI: 10.3389/fpls.2023.1272372.
- SPANOGHE, P. DE SCHAMPHELEIRE, M. VAN DER MEEREN, P. STEURBAUT, W. Influence of agricultural adjuvants on droplet spectra. Pest Manage. Science. Old. Pest. Science. v. 63, p. 4–16, 2007
- SULTAN, M.; HAMID, N.; JUNAID, M.; DUAN, J. J.; PEI, D. S. Organochlorine pesticides (OCPs) in freshwater resources of Pakistan: A review on occurrence, spatial distribution and associated human health and ecological risk assessment. Ecotoxicology and Environmental Safety, v. 249, 114362, 2023. DOI: https://doi.org/10.1016/j.ecoenv.2022.114362.
- SUTHAN, H. H. B. JAGANNATH, S. M. NARASIMHAN, H. M. SASIKALA T. Detection of Crop Diseases Using Agricultural Drone. In: PRIYADARSHI, N., PADMANABAN, S., GHADAI, R.K., PANDA, A.R., PATEL, R. (eds) Advances in Power Systems and Energy Management. ETAEERE, 2020. Lecture Notes in Electrical Engineering, v. 609. Springer, Singapore. 2020 https://doi.org/10.1007/978-981-15-7504-4_50
- SCHMIDT, F. A aviação agrícola no Brasil: Um modelo para seleção de aviões com uso da programação linear. Dissertação mestrado. Universidade Estadual do Oeste do Paraná, Toledo, 2006.
- VAIRAVAN, C. KAMBLE, B. M. DURGUDE, A. G. SNEHAL, R. INGLE, K. PUGAZENTHI, Hyperspectral Imaging of Soil and Crop: A Review. Journal of Experimental Agriculture International. n. 1, v. 46, p. 48-61, 2024.
- VEROUSTRAETE, F. The rise of the drones in agriculture. EC agriculture, n. 2, v. 2, p. 325-327, 2015.
- WANG, G. ZHANG, T. SONG, C. YU, X. SHAN, C. GU, H. LAN, Y. Evaluation of Spray Drift of Plant Protection Drone Nozzles Based on Wind Tunnel Test. Agriculture. n.13, v. 3, p. 628, 2023. https://doi.org/10.3390/agriculture13030628
- WANG, J.; LAN, Y.; ZHANG, H.; ZHANG, Y.; WEN, S.; YAO, W.; DENG, J. DRIFT and deposition of UAV-applied pesticide on pineapple plants under different meteorological conditions. Intern. J. Agric. Biol. Eng, n. 6, v.11, p. 5–12, 2018
- WAQAS, M. S. CHEEMA, M. J. M. WAQAS, A. HUSSAIN, S. Enhancing water productivity of potato Solanum tuberosum L. through drip irrigation system. In Proceedings of the 2nd International Conference on Horticultural Sciences, Faisalabad, Pakistan p. 16-18, 2016.
- WANG, L., LAN, Y., ZHANG, Y., ZHANG, H., TAHIR, M. N., OU, S & CHEN, P. Applications and prospects of agricultural unmanned aerial vehicle obstacle avoidance technology in China. Sensors, n. 19, v. 3, p. 642, DOI: https://doi.org/10.3390/ s19030642. 2019.
- WANG, C.; HERBST, A.; ZENG, A.; WONGSUK, S.; QIAO, B.; QI, P.; BONDS, J.; OVERBECK, V.; YANG, Y.; GAO, W.; HE, X. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Science of The Total Environment, v. 777, 146181, 2021. DOI: https://doi.org/10.1016/j.scitotenv.2021.146181
- WANG, G. et al. Deposition and biological efficacy of UAV-based low-volume application in rice fields. International Journal of Precision Agricultural Aviation, v. 1, p. 65–72, 2018. DOI: 10.33440/j.ijpaa.2020030.
- WEST, J. S. et al. Emerging technologies for crop disease management. Crop Protection. v. 70, p. 89-94, 2015. https://doi.org/10.1016/j.cropro.2014.12.018
- XIAO, Q. et al. Comparison of droplet deposition control efficacy on Phytophthora capsica and aphids in the processing pepper field of the unmanned aerial vehicle and knapsack sprayer. Agronomy, v. 10, 2020. DOI: 10.3390/agronomy10020215.
- YUBIN, L. THOMSON, S. J. HUANG, Y. et al. Current status and future directions of precision aerial application for site-specific crop management in the US. Computers and Electronics in Agriculture. v. 74, p. 34–38, 2010
- YAN, X. J. CHU, S. H. YANG, D. B. YUAN, H. Z. Agriculture on the Wings of Science and Technology: Aunmanned aerial vehicle (UAV) low-volume spray technology for Plant protection reduces pesticide use and increases control effectiveness. Magazine of Plant Protection. Beijing. v. 48, n. 3, p. 469–476, 2021
- ZHANG, K. F.; ZHANG, Z.; ZHANG, Y. H.; LI, H. Experimental study of single-rotor UAV on droplet deposition distribution in soybean field. Applied Ecology and Environmental Research, v. 17, n. 6, p. 13833-13844, 2019. DOI: https://doi.org/10.15666/aeer/1706_1383313844.
- ZHANG, L. ZHANG, L. M. A. W. et al. Application of UAV remote sensing technology in monitoring and management of crop diseases and insect pests. J Integr Agric. n. 12, v. 19, p. 3057-3071, 2020.