Skip to main content Skip to main navigation menu Skip to site footer
Agricultural Science
Published: 2024-12-16

Drone technology aimed at agricultural pulverization

Universidade do Estado da Bahia
Universidade do Estado da Bahia
Agroindústria Do Vale Do São Francisco
Universidade Federal do Vale do São Francisco
Universidade do Estado da Bahia
Drone, agricultural spraying, efficiency, inputs

Abstract

The use of drones in agricultural spraying is becoming a sustainable and efficient alternative to traditional methods. Aerial spraying with drones offers several advantages, including greater uniformity in the application of chemicals, lower environmental impact, and reduced damage to crops. In addition, drones can operate in areas that are difficult to access, optimizing time and minimizing worker exposure to toxic substances. This technology uses sensors and multispectral cameras to adjust the amount and type of product applied, increasing precision and reducing the excessive use of inputs. Studies show that drone spraying significantly reduces pesticide drift, ensuring more controlled application and reducing the risk of environmental contamination. Energy efficiency is also an advantage, with reduced consumption of water and chemicals. However, the implementation of drones faces challenges, such as short battery life, regulatory limitations, and the need for technological infrastructure to process large volumes of data. Adverse weather conditions can also affect drone operations, impacting spraying effectiveness. Overall, the adoption of drones in agriculture represents a significant step forward towards safer and more sustainable practices, but it still requires specific adjustments and regulations to maximize its efficiency.

References

  1. ANEJA M, CHOPRA S. Precision Agriculture: A Sustainable Approach for Smart Farming. (org) In Wireless Sensor Networks: Theory to Applications. Academic Press. p. 81-101, 2019
  2. BENSON, A. Drones in Agriculture: Implications of a New FAA Decision for Aerial Imagery. Farm Journal, 2016.
  3. BORYSENKO, A. A. ANTONENKO, A. M. OMELCHUK, S. T. et al. rationale for recommendations for safe aerial application of pesticides used by unmanned aerial vehicles (uav). National Medical University Bulletin. Vinnytsia. v. 27, 2023.
  4. BORYSENKO, A. ANTONENKO, A. OMELCHUK, S. BILOUS, S. MELNYCHUK, F. Ecological and hygienic assessment and regulation of innovative technology of pesticide application by means of unmanned aerial vehicles. Rawal Medical Journal, n. 47, v. 1, p. 213-213, 2022.
  5. DAYANA, K. RAMESH, T. AVUDAITHAI, S. SEBASTIAN, S. P. RATHIKA, S. Feasibility of using drone for foliar nutrient spraying in irrigated greengram. Ecology, Environment and Conservation v. 28, p. 548–553, 2022.
  6. DENGERU, Y. et al. Study on spray deposition and drift characteristics of UAV agricultural sprayer for application of insecticide in redgram crop (Cajanus cajan L. Millsp.). Agronomy, v. 12, 2022. DOI: 10.3390/agronomy12123196.
  7. DE SCHAMPHELEIRE, M. NUYTTENS, D. BAETENS, K. CORNELIS, W. GABRIELS, D. SPANOGHE, P. Effects of pesticide spray drift on the physicochemical properties of the spray solution. Precise. Ag, v.10, p, 409–420. 2009
  8. DI GENNARO, S. F.; TOSCANO, P.; GATTI, M.; PONI, S.; BERTON, A.; MATESE, A. Spectral comparison of UAV-Based hyper and multispectral cameras for precision viticulture. Remote Sensing, v. 14, n. 3, p. 449, 2022.
  9. DOGGALLI, G. SANTHOSHINII, E. MANOJKUMAR, H. G. SRIVASTAVA, M. GANESH, H. S. BARIGAL, A. ANITHAA, V. AMEEN, A. KUNDU, R. Drone Technology for Crop Disease Resistance: Innovations and Challenges. Sci. Res. Rep., vol. 30, no. 8, pp. 174-180, 2024
  10. EL-ZAEMEY, S.; HEYWORTH, J.; FRITSCHI, L. Noticing pesticide spray drift from agricultural pesticide application areas and breast cancer: a case-control study. Australian and New Zealand Journal of Public Health, v. 37, n. 6, p. 547-555, 2013. DOI: https://doi.org/10.1111/1753-6405.12111.
  11. FILHO F H. L. HELDENS, W. B. KONG, Z. D. E LANGE, E. S. Drones: Innovative Technology for Use in Precision Pest Management. Journal of Economic Entomology. n. 1, v. 113, p. 1-25, 2019.
  12. FURTADO, R. D.; HOFF, R. B. Pátio de descontaminação de aeronaves agrícolas Evolução técnica e legal 1. p. 74–85, 2017.
  13. História da aviação agrícola, Ministério da Agricultura e Pecuária (MAPA), disponível em. https://encurtador.com.br/8eGHQ. Acesso em 20 set, 2024.
  14. JIANG, X. ZHANG, C. YANG, C. et al. Plant disease identification method based on deep learning and convolutional neural network. In 4th International Conference on Computer and Communication Systems (ICCCS). P. 659-663, 2019.
  15. JOMANTAS, T. et al. The Influence of Newly Developed Spray Drift Reduction Agents on Drift Mitigation by Means of Wind Tunnel and Field Evaluation Methods. Agriculture, v. 13, n. 2, 349, 2023. DOI: https://doi.org/10.3390/agriculture13020349
  16. KAMILARIS, A. et al. A review on the use of unmanned aerial vehicles and artificial intelligence to study crop growth in precision agriculture. Computers and Electronics in Agriculture. v. 147, p. 128-141, 2018.
  17. LAN, Y.; CHEN, S.; FRITZ, B. K. Current status and future trends of precision agricultural aviation technologies. International Journal of Agricultural and Biological Engineering, v. 10, n. 3, p. 1-17, 2017. DOI: https://doi.org/10.3965/j.ijabe.20171003.3088
  18. LEE, C. H. S. PHANG, S. K. MUN, H. K. Design and Implementation of Agriculture UAV with optimized spray mechanism. MATEC Web of Conferences. Subang Jaya. v. 335, p. 1-18, 2021.
  19. LIU, Y. et al. Assessment of spray deposition and losses in an apple orchard with an unmanned agricultural aircraft system in China. Transactions of the ASABE, v. 63, p. 619–627, 2020. DOI: 10.13031/TRANS.13233.
  20. LI, L. et al. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Frontiers in Plant Science, v. 13, 2022. DOI: 10.3389/fpls.2022.981494.
  21. LOWENBERG-DEBOER J, ERICKSON B. Setting the record straight on precision agriculture adoption. ,Agronomy Journal. 2019 n. 111, v. 4, p. 1552-1569, 2019.
  22. NIKAM, R. K. NADKAR, A. U. PRAJAPATI. Development of agricultural spraying drone. International Journal of Scientific Research in Engineering and Management. v. 8, p. 1-6, 2024.
  23. PAUL, R. A. ARTHANARI, P. M. PAZHANIVELAN, S. KAVITHA, R. E. DJANAGUIRAMAN, Drone-based herbicide application for energy saving, enhanced weed control and cost-effectiveness in direct-seeded rice. The Indian Journal of Agricultural Sciences. n, 7. v. 93. p.04–09, 2023
  24. PEREIRA, A. S, SHITSUKA, D. M, PARREIRA, F. J. SHITSUKA, R. Metodologia da Pesquisa Científica. [e-book]. Santa Maria. Ed. 1, UAB/NTE/UFSM, 2018.
  25. RAGIMAN, S. et al., Evaluation of pesticide mixtures for Unmanned Aerial Spraying in Rice: The Physical Compatibility Perspective. Internal. j. Environment. Climate. Change, Hyderabad v. 13, n. 9, p. 2848-2858, 2023.
  26. RAMESH, T. MADHUSREE, S. RATHIKA, S. MEENA, S. RAJA, K. Drone based herbicide application in greengram (Vigna radiata). The Indian Journal of Agricultural Sciences. Delhi, India, v. 94, n. 3, p. 329–332, 2024. DOI: 10.56093/ijas.v94i3.144541
  27. SARRI, D. et al. Testing a multi-rotor unmanned aerial vehicle for spray application in high slope terraced vineyard. Journal of Agricultural Engineering, v. 50, p. 38–47, 2019. DOI: 10.4081/jae.2019.853.
  28. RANA, M. A. Reshaping agriculture using the nuclear techniques. The Pakistan case. Agricultural Science, n. 9, v. 9, p. 1168-1172, 2018.
  29. SADHANA, B. NAIK, G. MYTHRI, R. J. HEDGE, P. G. SHYAMA, K. S. B. Development of quad copter based pesticide spraying mechanism for agricultural applications. Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng. n. 5, v. 2, p, 121-123. 2017.
  30. SAURA, J. R.; REYES-MENENDEZ, A.; PALOS-SANCHEZ, P. Mapping multispectral Digital Images using a Cloud Computing software: applications from UAV images. Heliyon, v. 5, n. 2, 2019.
  31. SANCHEZ-FERNANDEZ, L.; BARRERA-BAEZ, M.; MARTÍNEZ-GUANTER, J.; PEREZ-RUIZ, M. Reducing environmental exposure to PPPs in super-high density olive orchards using UAV sprayers. Frontiers in Plant Science, v. 14, 2024. DOI: 10.3389/fpls.2023.1272372.
  32. SPANOGHE, P. DE SCHAMPHELEIRE, M. VAN DER MEEREN, P. STEURBAUT, W. Influence of agricultural adjuvants on droplet spectra. Pest Manage. Science. Old. Pest. Science. v. 63, p. 4–16, 2007
  33. SULTAN, M.; HAMID, N.; JUNAID, M.; DUAN, J. J.; PEI, D. S. Organochlorine pesticides (OCPs) in freshwater resources of Pakistan: A review on occurrence, spatial distribution and associated human health and ecological risk assessment. Ecotoxicology and Environmental Safety, v. 249, 114362, 2023. DOI: https://doi.org/10.1016/j.ecoenv.2022.114362.
  34. SUTHAN, H. H. B. JAGANNATH, S. M. NARASIMHAN, H. M. SASIKALA T. Detection of Crop Diseases Using Agricultural Drone. In: PRIYADARSHI, N., PADMANABAN, S., GHADAI, R.K., PANDA, A.R., PATEL, R. (eds) Advances in Power Systems and Energy Management. ETAEERE, 2020. Lecture Notes in Electrical Engineering, v. 609. Springer, Singapore. 2020 https://doi.org/10.1007/978-981-15-7504-4_50
  35. SCHMIDT, F. A aviação agrícola no Brasil: Um modelo para seleção de aviões com uso da programação linear. Dissertação mestrado. Universidade Estadual do Oeste do Paraná, Toledo, 2006.
  36. VAIRAVAN, C. KAMBLE, B. M. DURGUDE, A. G. SNEHAL, R. INGLE, K. PUGAZENTHI, Hyperspectral Imaging of Soil and Crop: A Review. Journal of Experimental Agriculture International. n. 1, v. 46, p. 48-61, 2024.
  37. VEROUSTRAETE, F. The rise of the drones in agriculture. EC agriculture, n. 2, v. 2, p. 325-327, 2015.
  38. WANG, G. ZHANG, T. SONG, C. YU, X. SHAN, C. GU, H. LAN, Y. Evaluation of Spray Drift of Plant Protection Drone Nozzles Based on Wind Tunnel Test. Agriculture. n.13, v. 3, p. 628, 2023. https://doi.org/10.3390/agriculture13030628
  39. WANG, J.; LAN, Y.; ZHANG, H.; ZHANG, Y.; WEN, S.; YAO, W.; DENG, J. DRIFT and deposition of UAV-applied pesticide on pineapple plants under different meteorological conditions. Intern. J. Agric. Biol. Eng, n. 6, v.11, p. 5–12, 2018
  40. WAQAS, M. S. CHEEMA, M. J. M. WAQAS, A. HUSSAIN, S. Enhancing water productivity of potato Solanum tuberosum L. through drip irrigation system. In Proceedings of the 2nd International Conference on Horticultural Sciences, Faisalabad, Pakistan p. 16-18, 2016.
  41. WANG, L., LAN, Y., ZHANG, Y., ZHANG, H., TAHIR, M. N., OU, S & CHEN, P. Applications and prospects of agricultural unmanned aerial vehicle obstacle avoidance technology in China. Sensors, n. 19, v. 3, p. 642, DOI: https://doi.org/10.3390/ s19030642. 2019.
  42. WANG, C.; HERBST, A.; ZENG, A.; WONGSUK, S.; QIAO, B.; QI, P.; BONDS, J.; OVERBECK, V.; YANG, Y.; GAO, W.; HE, X. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Science of The Total Environment, v. 777, 146181, 2021. DOI: https://doi.org/10.1016/j.scitotenv.2021.146181
  43. WANG, G. et al. Deposition and biological efficacy of UAV-based low-volume application in rice fields. International Journal of Precision Agricultural Aviation, v. 1, p. 65–72, 2018. DOI: 10.33440/j.ijpaa.2020030.
  44. WEST, J. S. et al. Emerging technologies for crop disease management. Crop Protection. v. 70, p. 89-94, 2015. https://doi.org/10.1016/j.cropro.2014.12.018
  45. XIAO, Q. et al. Comparison of droplet deposition control efficacy on Phytophthora capsica and aphids in the processing pepper field of the unmanned aerial vehicle and knapsack sprayer. Agronomy, v. 10, 2020. DOI: 10.3390/agronomy10020215.
  46. YUBIN, L. THOMSON, S. J. HUANG, Y. et al. Current status and future directions of precision aerial application for site-specific crop management in the US. Computers and Electronics in Agriculture. v. 74, p. 34–38, 2010
  47. YAN, X. J. CHU, S. H. YANG, D. B. YUAN, H. Z. Agriculture on the Wings of Science and Technology: Aunmanned aerial vehicle (UAV) low-volume spray technology for Plant protection reduces pesticide use and increases control effectiveness. Magazine of Plant Protection. Beijing. v. 48, n. 3, p. 469–476, 2021
  48. ZHANG, K. F.; ZHANG, Z.; ZHANG, Y. H.; LI, H. Experimental study of single-rotor UAV on droplet deposition distribution in soybean field. Applied Ecology and Environmental Research, v. 17, n. 6, p. 13833-13844, 2019. DOI: https://doi.org/10.15666/aeer/1706_1383313844.
  49. ZHANG, L. ZHANG, L. M. A. W. et al. Application of UAV remote sensing technology in monitoring and management of crop diseases and insect pests. J Integr Agric. n. 12, v. 19, p. 3057-3071, 2020.

How to Cite

Oliveira, F. S. de, Santana Junior , J. P. de, Rosa, L. de J., Figueiredo Neto , A., & Oliveira, F. J. V. de. (2024). Drone technology aimed at agricultural pulverization. Scientific Electronic Archives, 18(1). https://doi.org/10.36560/18120252017