Ir para o conteúdo principal Ir para o menu de navegação principal Ir para o rodapé
Ciências Exatas e Engenharias
Publicado: 2023-02-24

Evaluation of stress factors in the metabolism of Pedra-2 yeast

Universidade Estadual de Mato Grosso do Sul
Universidade Estadual de Mato Grosso do Sul
Universidade Estadual de Mato Grosso do Sul
Universidade Estadual de Mato Grosso do Sul
Temperatura concentração de açúcares Saccharomyces cerevisiae processo fermentativo.

Resumo

The objective of this study was to evaluate the composition of the fermentation substrate as well as the effect of stress factors on the metabolism of Pedra-2 yeast. An exploratory survey was conducted for the composition of fermentable carbohydrates present in sugarcane juice. For the analyses of mineral and metal content, acid digestion of organic matter was used, determined by flame atomic absorption whit a spectroscope. The pre-inoculum was prepared whit 0.10g of the freeze-dried yeasts that were inoculated and diluted in sterile saline solution. The bioreactor with 125mL Erlenmeyer flasks, in which 50mL of sterilized sugarcane broth was added and adjusted to concentrations of 18, 25 and 32°Brix, to which the yeast colonies were inoculated with the help of a platinum loop and incubated at 30 and 40°C. Samples were collected at different times to evaluate biomass production through spectrophotometry at 570nm and cell viability by counting in a Neubauer chamber with methylene blue dye. The present study points out that the associated stress factors interfere with the studied microorganism's metabolism.

Referências

  1. ALI, Ghaffar et al. Quantitative assessment of energy conservation and renewable energy awareness among variant urban communities of Xiamen, China. Renewable and Sustainable Energy Reviews, v. 109, p. 230-238, 2019. DOI: https://doi.org/10.1016/j.rser.2019.04.028
  2. ARAÚJO, R. F.; ALVARENGA, L. A bibliometria na pesquisa científica da pós-graduação brasileira de 1987 a 2007. Encontros Bibli: Revista Eletrônica de Biblioteconomia e Ciência da Informação, v. 16, p.51-70, 2011. DOI: https://doi.org/10.5007/1518-2924.2011v16n 31p51
  3. AUESUKAREE, Choowong. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. Journal of Bioscience and Bioengineering, v. 124, n. 2, p. 133-142, 2017. DOI: https://doi.org/10.1016/j.jbiosc.2017.03.009
  4. BATISTOTE, Margareth et al. Desempenho de leveduras obtidas em indústria de Mato Grosso do Sul na produção de etanol em mosto a base de cana de açúcar. Ciência e Natura, v.2, p. 83-95, 2010.
  5. BRANDÃO, Ana Carolina Tolentino. Avaliação do processo de fermentação alcoólica em condições de altas concentrações de açúcares empregando leveduras de características floculantes. 2019. 95 f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Uberlândia, 2019. DOI http://dx.doi.org/10.14393/ufu.di.2019.2246
  6. CASPETA, Luis; NIELSEN, Jens. Thermotolerant yeast strains adapted by laboratory evolution show trade-off at ancestral temperatures and preadaptation to other stresses. MBio, v. 6, p. 0431-15, 2015. DOI: https://doi.org/10.1128/mBio.00431-15
  7. CHIDI, B. Silas; BAUER, F. F.; ROSSOUW, D. Organic acid metabolism and the impact of fermentation practices on wine acidity: A review. South African Journal of Enology and Viticulture, v. 39, n. 2, p. 1-15, 2018. DOI: http://dx.doi.org/10.21548/39-2-3164
  8. DE SOUZA, Jonas Paulino et al. Improvement of Brazilian bioethanol production – Challenges and perspectives on the identification and genetic modification of new strains of Saccharomyces cerevisiae yeasts isolated during ethanol process. Fungal Biology, v. 122, p. 583-591, 2018. DOI: https://doi.org/10.1016/j.funbio.2017.12.006
  9. EARDLEY, Joshua; TIMSON, David J. Yeast cellular stress: impacts on bioethanol production. Fermentation, v. 6, p. 109, 2020. DOI: https://doi.org/10.3390/f ermentation6040109
  10. EPE – Empresa de Pesquisa Energética 2018. Balanço Energético Nacional. Disponível em: http://epe.gov.br-pt/publica%C3%A7%C3%B5es-dados-bertos/Publicacoes arquivos/publica%C3%A7%C3%A3o-303/t%C3%B3pico-4 19/Ben2018Int.pdf. Accessed in September 9, 2022
  11. FAVARO, Lorenzo; JANSEN, Trudy; VAN ZYL, Willem Heber. Exploring industrial and natural Saccharomyces cerevisiae strains for the bio-based economy from biomass: the case of bioethanol. Critical Reviews in Biotechnology, v. 39, p. 800-816, 2019. DOI: https://doi.org/10.1080/07388551.2019.1619157
  12. IEA – International Energy Agency 2018. Energy Statistics Data Browser. Disponível em: https://www.iea.org/s tatistics/efficiency/. Accessed in September 9, 2022
  13. LEE, S. S. et al. Rapid determination of yeast viability. In: Biotechnol. Bioeng. Symp.;(United States). Univ. of Michigan, Ann Arbor, 1981.
  14. LIMA, M. A. et al. Renewable energy in reducing greenhouse gas emissions: Reaching the goals of the Paris agreement in Brazil. Environmental Development, v. 33, p. 100504, 2020. DOI: https://doi.org/10.1016/j.envdev. 2020.100504
  15. LIP, Ka Ying Florence et al. Selection and subsequent physiological characterization of industrial Saccharomyces cerevisiae strains during continuous growth at sub-and-supra optimal temperatures. Biotechnology Reports, v. 26, p. 0462, 2020. DOI: https://doi.org/10.1016/j.btre. 2020.e 00462
  16. LOPES, Mario Lucio et al. Ethanol production in Brazil: a bridge between science and industry. Brazilian Journal of Microbiology, v. 47, p. 64-76, 2016. DOI: https://doi.org/10.1016/j.bjm.2016.10.003
  17. PEREIRA, Tania. et al. Quantitative operating principles of yeast metabolism during adaptation to heat stress. Cell reports, v. 22, p. 2421-2430, 2018. DOI: https://doi.org/10.1016/j.celrep.2018.02.020
  18. RODIONOVA, Margarita V. et al. A comprehensive review on lignocellulosic biomass biorefinery for sustainable biofuel production. International Journal of Hydrogen Energy, v. 47, p. 1481-1498 2021. https://doi.org/10.1016/j.ijhydene.2021.10.122
  19. SAINI, Priyanka et al. Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Process Biochemistry, v. 72, p. 1-12, 2018. DOI: https://doi.org/10.1016/j.procbio.2018.07.001
  20. SANTOS, Líbia Diniz et al. Continuous ethanol fermentation in tower reactors with cell recycling using flocculent Saccharomyces cerevisiae. Process Biochemistry, v. 50, n. 11, p. 1725-1729, 2015. DOI: https://doi.org/10.1016/j.procbio.2015.07.020
  21. SANTOS, Maria do Socorro Mascarenhas et al. Energy cultures and sustainability in biofuel production. Revista de Agricultura Neotropical, v. 9, n. 1, p. e6719-e6719, 2022. DOI: https://doi.org/10.32404/rean.v9i1.6719
  22. SILVA, Rebeca Fasioli et al. The composition of sacarine substrates for ethanol production and the fermentative capacity Saccharomyces cerevisiae Pedra-2. Research, Society and Development, v. 9, n. 11, p. e44891110235-e44891110235, 2020. DOI: https://doi.org/10.33448/rsd-v9i11.10235
  23. SILVA, Wellington Costa et al. Thermal degradation of ethanolic biodiesel: Physicochemical and thermal properties evaluation. Energy, v. 114, p. 1093-1099, 2016. DOI: https://doi.org/10.1016/j.energy.2016.08.052
  24. TECHAPARIN, Atiya. et al. High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion. Brazilian Journal of Microbiology, v. 48, p. 461-475, 2017. DOI: https://doi.org/10.1016/j.bjm.2017.01.006
  25. TOLMASQUIM, M. T. et al. The Brazilian commitment to combating climate change: energy production and use. Empresa de Pesquisa Energética-EPE, Rio de Janeiro, Brazil, p. 1-96, 2016.
  26. WALKER, Graeme M.; WALKER, Roy SK. Enhancing yeast alcoholic fermentations. Advances in Applied Microbiology, v. 105, p. 87-129, 2018. DOI: https://doi.org/10.1016/bs.aambs.2018.05.003

Como Citar

Coertjens, N. C. ., Mascarenhas, M. do S., Silva, R. F., & Batistote, M. (2023). Evaluation of stress factors in the metabolism of Pedra-2 yeast. Scientific Electronic Archives, 16(3). https://doi.org/10.36560/16320231670