Resumo
O cupuaçu (Theobroma grandiflorum S.) é um fruto comestível e originário da região Amazônica brasileira, sendo hoje encontrado em várias partes do mundo. A polpa, bem como a semente, apresenta em sua composição compostos que possuem influência sobre fatores biológicos e consequentemente, podem apresentar efeitos preventivos contra algumas doenças. O estudo teve como objetivo avaliar o efeito protetor do cupuaçu como antioxidante nos tecidos (fígado e cérebro) e na medula óssea de camundongos machos Swiss, através da inibição da mutagenicidade induzida pelo agente alquilante ciclofosfamida (CPA). O extrato aquoso in natura do cupuaçu (EAC) foi usado para os testes in vivo de biomarcadores de estresse oxidativo (superóxido dismutase, catalase, glutationa-S-transferase, glutationa reduzida, ácido ascórbico e carbonilação de proteínas) e do micronúcleo para a avaliação do potencial antimutagênico/mutagênico . Os animais (n= 6 /grupo) foram tratados por 15 dias consecutivos com EAC (via gavagem) e no 15º dia receberam intraperitonealmente NaCl (0,9%) ou CPA (25 mg/Kg), sendo sacrificados 24 horas após o tratamento para avaliação dos parâmetros acima citados e da frequência de eritrócitos policromáticos micronucleados (MNPCE). Os resultados mostraram que o pré-tratamento por 15 dias com o EAC somente aumentou a atividade da superóxido dismutase cerebral e na presença da CPA houve redução desta atividade no fígado. Esta dose de CPA não promoveu alterações per se no status redox, porém o extrato não reduziu a frequência de MNPCE induzida pela CPA, quando comparado com o grupo controle positivo. Ainda, o grupo tratado somente com a polpa não mostrou efeito mutagênico. Diante dos resultados foi possível verificar que o cupuaçu não apresentou atividade antimutagênica/mutagênica e ainda que o processo de congelamento das amostras pode ter interferido nas respostas frente aos parâmetros bioquímicos do status redox avaliados.
Referências
- ARAÚJO, É. S., GARCIA, R. S., DAMBRÓS, B., PIENIZA, S., SCHNEIDER, A., ABIB, R.T. Impact of vitamin C supplementation on lipid peroxidation and reduced glutathione levels in the liver tissue of mice with cyclophosphamide-induced immunosuppression. Revista de Nutrição [online], v. 29, n. 04, p. 579-587, 2016. https://doi.org/10.1590/1678-98652016000400012
- AU, W., SOKOVA, O. I., KOPNIN, B., ARRIGHI, F. E. Cytogenetic toxicity of cyclophosphamide and its metabolites in vitro. Cytogenetics and Cell Genetics, v. 26, p. 108-116, 1980. doi: 10.1159/000131432.
- BARBOSA, F. G., SUGUI, M. M., SINHORIN, V. D. G., BICUDO, R. C., MOURA, F. R., SINHORIN, A. P. First phytochemical and biological study of the ethanolic extract from leaves of Capirona decorticans (Rubiaceae). Acta Amazonica, v. 48, p. 338-346, 2018. https://doi.org/10.1590/1809-4392201703483
- BRADFORD, M. M. A. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, v. 72, p. 248-254, 1976. DOI: 10.1006/abio.1976.9999
- CURIMBABA, T. F. S., ALMEIDA-JUNIOR, L. D., CHAGAS, A. S., QUAGLIO, A. E. V., HERCULANO, A.M., DI STASI, L. C. Prebiotic, antioxidant and anti-inflammatory properties of edible Amazon fruits. Food Bioscience, v. 36, p. 100599, 2020. https://doi.org/10.1016/j.fbio.2020.100599
- EVANS, H.J., SCOTT, D. The induction of chromosome aberrations by nitrogen mustard and its dependence on DNA synthesis. Proceedings of the Royal Society B., v. 173, p. 491-512, 1969.
- EZHILARASAN, D. Oxidative stress is bane in chronic liver diseases: Clinical and experimental perspective. Arab Journal of Gastroenterology, v.2, p. 56-64, 2018. doi: 10.1016/j.ajg.2018.03.002.
- GHOSH, P., BHATTACHARJEE, A., BASU, A., SINGHA, S., BHATTACHARYA, S. Attenuation of cyclophosphamide-induced pulmonary toxicity in Swiss albino mice by naphthalimide-based organoselenium compound 2- (5-selenocyanatopentyl) - benzo[de]isoquinoline 1,3-dione. Pharmaceutical Biology. v. 53, p. 524-532, 2015. doi: 10.3109/13880209.2014.931440
- GODOY, B. R. B., CONTE, A. M., GOVONI, B., BOEIRA, J. M. Evaluation of Micronuclei and Other Nuclear Alterations in Oral Mucosa Exfoliated Cells of Individuals Directly and Indirectly Exposed to Pesticides. Brazilian Journal of Development, v.5, p. 23889–23906, 2019. https://doi.org/10.34117/bjdv5n11-086
- HABIG, W. H., PABST, M. J., JACOBY, W. B. Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, v. 249, p. 7130-7139, 1974. doi: 10.1016/S0021-9258(19)42083-8
- IGHODARO, O.M., AKINLOYE, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, v. 54, p. 287-293, 2017. https://doi.org/10.1016/j.ajme.2017.09.001.
- KERN, J.C., KEHRER, J.P. Acrolein-induced cell death: A caspase-influenced decision between apoptosis
- and oncosis/necrosis. Chemical Biological Interactions, v. 139(1), p. 79-95, 2002. doi: 10.1016/s0009-2797(01)00295-2.
- KUSKOSKI, E.M.; ASUERO, G.A.; TRONCOSO, A.M.; MANCINI-FILHO, J.; FETT, R. Aplicación de diversos métodos químicos para determinar actividad antioxidante em pulpa de frutos. Revista de Ciência e Tecnologia de Alimentos, Campinas, v.25, n.4, p.726-732, 2005.
- LIU, F., LI, X. L ., LIN, T., HE, D.W., WEI, G.H., LIU, J.H., LI, L.S. The cyclophosphamide metabolite, acrolein, induces cytoskeleton changes and oxidative stress in sertoli cells. Molecular Biology Reports, v. 39, p. 493-500, 2012. DOI: 10.1007/s11033-011-0763-9
- LUANGMONKONG, T.; SURIGUGA, S.; MUTSAERS, H. A.; GROOTHUIS, G. M.; OLINGA, P.; BOERSEMA, M.. Targeting oxidative stress for the treatment of liver fibrosis. Reviews of Physiology, Biochemistry and Pharmacology, Springer, v.175, p.71-102, 2018. http://doi.org/10.1007/112_2018_10
- LUIZ, T. C.; CUNHA, A. P. S.; AGUIAR, D. ; SUGUI, M. M.; BICUDO, R. C.; SINHORIN, A. P.; SINHORIN, V. D. G. Antioxidant potential of Carica papaya Linn (Caricaceae) leaf extract in mice with cyclophosphamide induced oxidative stress. Scientia Medica Porto Alegre, v. 30, p. 1-15, 2020. DOI: 10.15448/1980-6108.2020.1.34702
- MacGREGOR, J. T.; HEDDLE, J. A.; HITE, M.; MARGOLIN, B. H.; RAMEL C.; SALAMONE, M. F.; TIA, R. R.; WILD, D. Guidelines for the conduct of micronucleus assay in mammalian bone marrow erythrocytes. Mutation Research, v.189, p.103-12, 1987. DOI: 10.1016/0165-1218(87)90016-4
- MALAVOLTA, E. Elementos de nutrição mineral de plantas. Piracicaba: Ceres, 251p, 1980.
- MANOHARAN, K., BANERJEE, M.R. β-Carotene reduces sister chromatid exchange induce chemical
- carcinogens in mouse mammary cells in organ culture. Cell Biology International Reports, v. 9, p.783-789.1985. doi: 10.1016/0309-1651(85)90096-7.
- MISRA, H. P., FRIDOVICH, I. The role of superoxide anion in the auto-oxidation o epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, v. 247, p. 3170–3175, 1972. DOI: 10.1016/S0021-9258(19)45228-9
- NELSON, D.L., COX, M.M. Princípios de bioquímica de Lehninger, 5.ed., 2011. Porto Alegre. 1274p.
- NELSON, D. P., KIESOW, L. A. Enthalphy of decomposition of hydrogen peroxide by catalase at 25°C (with molar extinction coefficients of H2O2 solution in the UV). Analytical Biochemistry; v. 49, p. 474–478, 1972. DOI: 10.1016/0003-2697(72)90451-4
- PEREIRA, A.L.F., ABREU, V.K.G., RODRIGUES, S. CUPUASSU - Theobroma grandiflorum, Exotic Fruits, Academic Press, p. 159-162, 2018, ISBN 9780128031384. https://doi.org/10.1016/B978-0-12-803138-4.00021-6.
- PEREIRA, C.A.B. Teste estatístico para comparar proporções em problemas de citogenética, In: RABELLO-GAY, M.N., RODRIGUES M.A, La R., Montelleone-Neto (Eds.) Mutagênese, teratogênese e carcinogênese: métodos e critérios de avaliação. São Paulo: FCA, p.113-21, 1991.
- PUGLIESE, A.G., TOMAS-BARBERAN, F.A., TRUCHADO, P., GENOVESE, M.I. Flavonoids, Proanthocyanidins, Vitamin C, and Antioxidant Activity of Theobroma grandiflorum (Cupuassu) Pulp and Seeds. Journal of Agricultural and Food Chemistry, v. 61(11), p. 2720–2728, 2013. doi: 10.1021/jf304349u.
- PUNARO, G.R., LIMA, D.Y., RODRIGUES, A.M., PUGLIERO, S., MOURO, M.G., ROGERO, M.M., HIGA, E.M.S. Cupuaçu extract reduces nitrosative stress and modulates inflammatory mediators in the kidneys of experimental diabetes. Clinical Nutrition, v. 38 (1), p. 364-371, 2019. https://doi.org/10.1016/j.clnu.2017.12.016.
- SEDLACK, J.; LINDSAY, R. H. Estimation of total, protein bound, and nonprotein sulphydryl groups in tissue with Ellman’s reagent. Analytical Biochemistry, v. 25, 192-205, 1968. DOI: 10.1016/0003-2697(68)90092-4
- SILVA, E.M., SOUZA, J.N.S., ROGEZ, H., REES, J.F., LARONDELLE, Y. Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chemistry, v.101, n.3, p.1012-1018, 2007. https://doi.org/10.1016/j.foodchem.2006.02.055
- SOUZA, A.G.C., ALVES, R.M., SOUZA, M.G. Cupuaçu, Theobroma grandiflorum. IICA, Instituto Interamericano de Cooperación para la Agricultura, 24 p, 2017.
- SPADA, P.D.S., SOUZA, G.G.N., BORTOLINI, G.V., HENRIQUES, J.A.P., SALVADOR, M. Antioxidant, mutagenic, and antimutagenic activity of frozen fruits. Journal of Medicinal Food, v.11(1), p.144-151, 2008.doi: 10.1089/jmf.2007.598.
- STANKIEWICZ, A., SKRZYDLEWSKA, E., MAKIELA, M. Effects of amifostine on liver oxidative stress caused by cyclophosphamide administration to rats. Drug Metabolism and Drug Interactions, v.19(2), p.67-82, 2002. doi: 10.1515/dmdi.2002.19.2.67.
- VILLACHICA, H. Frutales y hortalizas promisorios de la Amazonia. Lima: Tratado de Cooperacción Amazonia, p. 33-42, 1996.
- VRIESMANN, L. C., PETKOWICZ, C.L.O. Polysaccharides from the pulp of cupuassu (Theobroma grandiflorum): Structural characterization of a pectic fraction, Carbohydrate Polymers, v. 77 (1), p. 72-79, 2009. ISSN 0144-8617. https://doi.org/10.1016/j.carbpol.2008.12.007.
- YAN, L. J., TRABER, M. G., PACKER, L. Spectrophotometric method for determination of carbonyls in oxidatively modified apolipoprotein B of human lowdensity lipoproteins. Analytical Biochemistry, v. 228, p. 349– 351, 1995. doi: 10.1006/abio.1995.1362
- YANG, H., PROTIVA, P., CUI, B., MA, C., BAGGETT, S., HEQUET, V., MORI, S., WEINSTEIN, B.E., KENNELLY, E.J. New Bioactive Polyphenols from Theobroma grandiflorum (“Cupuaçu”). Journal of Natural Products, v. 66, p. 1501-1504, 2003. https://doi.org/10.1021/np034002j