Abstract
Cupuaçu (Theobroma grandiflorum S.) is an edible fruit originating in the Brazilian Amazon region, and is now found in several parts of the world. The pulp, as well as the seed, has compounds in its composition that have an influence on biological factors and, consequently, may have preventive effects against some diseases. The study aimed to evaluate the protective effect of cupuaçu as an antioxidant in tissues (liver and brain) and bone marrow of male Swiss mice, through the inhibition of mutagenicity induced by the alkylating agent cyclophosphamide (CPA). The in natura aqueous extract of cupuaçu (EAC) was used for the tests in vivo of biomarkers of oxidative stress (superoxide dismutase, catalase, glutathione-S-transferase, reduced glutathione, ascorbic acid and protein carbonylation) and of the micronucleus for the evaluation of the antimutagenic/mutagenic potential. The animals (n=6/group) were treated for 15 consecutive days with EAC (via gavage) and on the 15th day they received intraperitoneally NaCl (0.9%) or CPA (25 mg/kg), being sacrificed 24 hours after treatment to evaluate the parameters mentioned above and the frequency of micronucleated polychromatic erythrocytes (MNPCE). The results showed that pre-treatment for 15 days with EAC only increased brain superoxide dismutase activity and in the presence of CPA there was a reduction of this activity in the liver. This dose of CPA did not promote changes per se in the redox status, but the extract did not reduce the frequency of CPA-induced MNPCE when compared to the positive control group. Furthermore, the group treated with pulp alone did not show a mutagenic effect. In view of the results, it was possible to verify that cupuaçu did not present antimutagenic/mutagenic activity and that the freezing process of the samples may have interfered in the responses to the biochemical parameters of the redox status evaluated.
References
- ARAÚJO, É. S., GARCIA, R. S., DAMBRÓS, B., PIENIZA, S., SCHNEIDER, A., ABIB, R.T. Impact of vitamin C supplementation on lipid peroxidation and reduced glutathione levels in the liver tissue of mice with cyclophosphamide-induced immunosuppression. Revista de Nutrição [online], v. 29, n. 04, p. 579-587, 2016. https://doi.org/10.1590/1678-98652016000400012
- AU, W., SOKOVA, O. I., KOPNIN, B., ARRIGHI, F. E. Cytogenetic toxicity of cyclophosphamide and its metabolites in vitro. Cytogenetics and Cell Genetics, v. 26, p. 108-116, 1980. doi: 10.1159/000131432.
- BARBOSA, F. G., SUGUI, M. M., SINHORIN, V. D. G., BICUDO, R. C., MOURA, F. R., SINHORIN, A. P. First phytochemical and biological study of the ethanolic extract from leaves of Capirona decorticans (Rubiaceae). Acta Amazonica, v. 48, p. 338-346, 2018. https://doi.org/10.1590/1809-4392201703483
- BRADFORD, M. M. A. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, v. 72, p. 248-254, 1976. DOI: 10.1006/abio.1976.9999
- CURIMBABA, T. F. S., ALMEIDA-JUNIOR, L. D., CHAGAS, A. S., QUAGLIO, A. E. V., HERCULANO, A.M., DI STASI, L. C. Prebiotic, antioxidant and anti-inflammatory properties of edible Amazon fruits. Food Bioscience, v. 36, p. 100599, 2020. https://doi.org/10.1016/j.fbio.2020.100599
- EVANS, H.J., SCOTT, D. The induction of chromosome aberrations by nitrogen mustard and its dependence on DNA synthesis. Proceedings of the Royal Society B., v. 173, p. 491-512, 1969.
- EZHILARASAN, D. Oxidative stress is bane in chronic liver diseases: Clinical and experimental perspective. Arab Journal of Gastroenterology, v.2, p. 56-64, 2018. doi: 10.1016/j.ajg.2018.03.002.
- GHOSH, P., BHATTACHARJEE, A., BASU, A., SINGHA, S., BHATTACHARYA, S. Attenuation of cyclophosphamide-induced pulmonary toxicity in Swiss albino mice by naphthalimide-based organoselenium compound 2- (5-selenocyanatopentyl) - benzo[de]isoquinoline 1,3-dione. Pharmaceutical Biology. v. 53, p. 524-532, 2015. doi: 10.3109/13880209.2014.931440
- GODOY, B. R. B., CONTE, A. M., GOVONI, B., BOEIRA, J. M. Evaluation of Micronuclei and Other Nuclear Alterations in Oral Mucosa Exfoliated Cells of Individuals Directly and Indirectly Exposed to Pesticides. Brazilian Journal of Development, v.5, p. 23889–23906, 2019. https://doi.org/10.34117/bjdv5n11-086
- HABIG, W. H., PABST, M. J., JACOBY, W. B. Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, v. 249, p. 7130-7139, 1974. doi: 10.1016/S0021-9258(19)42083-8
- IGHODARO, O.M., AKINLOYE, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, v. 54, p. 287-293, 2017. https://doi.org/10.1016/j.ajme.2017.09.001.
- KERN, J.C., KEHRER, J.P. Acrolein-induced cell death: A caspase-influenced decision between apoptosis
- and oncosis/necrosis. Chemical Biological Interactions, v. 139(1), p. 79-95, 2002. doi: 10.1016/s0009-2797(01)00295-2.
- KUSKOSKI, E.M.; ASUERO, G.A.; TRONCOSO, A.M.; MANCINI-FILHO, J.; FETT, R. Aplicación de diversos métodos químicos para determinar actividad antioxidante em pulpa de frutos. Revista de Ciência e Tecnologia de Alimentos, Campinas, v.25, n.4, p.726-732, 2005.
- LIU, F., LI, X. L ., LIN, T., HE, D.W., WEI, G.H., LIU, J.H., LI, L.S. The cyclophosphamide metabolite, acrolein, induces cytoskeleton changes and oxidative stress in sertoli cells. Molecular Biology Reports, v. 39, p. 493-500, 2012. DOI: 10.1007/s11033-011-0763-9
- LUANGMONKONG, T.; SURIGUGA, S.; MUTSAERS, H. A.; GROOTHUIS, G. M.; OLINGA, P.; BOERSEMA, M.. Targeting oxidative stress for the treatment of liver fibrosis. Reviews of Physiology, Biochemistry and Pharmacology, Springer, v.175, p.71-102, 2018. http://doi.org/10.1007/112_2018_10
- LUIZ, T. C.; CUNHA, A. P. S.; AGUIAR, D. ; SUGUI, M. M.; BICUDO, R. C.; SINHORIN, A. P.; SINHORIN, V. D. G. Antioxidant potential of Carica papaya Linn (Caricaceae) leaf extract in mice with cyclophosphamide induced oxidative stress. Scientia Medica Porto Alegre, v. 30, p. 1-15, 2020. DOI: 10.15448/1980-6108.2020.1.34702
- MacGREGOR, J. T.; HEDDLE, J. A.; HITE, M.; MARGOLIN, B. H.; RAMEL C.; SALAMONE, M. F.; TIA, R. R.; WILD, D. Guidelines for the conduct of micronucleus assay in mammalian bone marrow erythrocytes. Mutation Research, v.189, p.103-12, 1987. DOI: 10.1016/0165-1218(87)90016-4
- MALAVOLTA, E. Elementos de nutrição mineral de plantas. Piracicaba: Ceres, 251p, 1980.
- MANOHARAN, K., BANERJEE, M.R. β-Carotene reduces sister chromatid exchange induce chemical
- carcinogens in mouse mammary cells in organ culture. Cell Biology International Reports, v. 9, p.783-789.1985. doi: 10.1016/0309-1651(85)90096-7.
- MISRA, H. P., FRIDOVICH, I. The role of superoxide anion in the auto-oxidation o epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, v. 247, p. 3170–3175, 1972. DOI: 10.1016/S0021-9258(19)45228-9
- NELSON, D.L., COX, M.M. Princípios de bioquímica de Lehninger, 5.ed., 2011. Porto Alegre. 1274p.
- NELSON, D. P., KIESOW, L. A. Enthalphy of decomposition of hydrogen peroxide by catalase at 25°C (with molar extinction coefficients of H2O2 solution in the UV). Analytical Biochemistry; v. 49, p. 474–478, 1972. DOI: 10.1016/0003-2697(72)90451-4
- PEREIRA, A.L.F., ABREU, V.K.G., RODRIGUES, S. CUPUASSU - Theobroma grandiflorum, Exotic Fruits, Academic Press, p. 159-162, 2018, ISBN 9780128031384. https://doi.org/10.1016/B978-0-12-803138-4.00021-6.
- PEREIRA, C.A.B. Teste estatístico para comparar proporções em problemas de citogenética, In: RABELLO-GAY, M.N., RODRIGUES M.A, La R., Montelleone-Neto (Eds.) Mutagênese, teratogênese e carcinogênese: métodos e critérios de avaliação. São Paulo: FCA, p.113-21, 1991.
- PUGLIESE, A.G., TOMAS-BARBERAN, F.A., TRUCHADO, P., GENOVESE, M.I. Flavonoids, Proanthocyanidins, Vitamin C, and Antioxidant Activity of Theobroma grandiflorum (Cupuassu) Pulp and Seeds. Journal of Agricultural and Food Chemistry, v. 61(11), p. 2720–2728, 2013. doi: 10.1021/jf304349u.
- PUNARO, G.R., LIMA, D.Y., RODRIGUES, A.M., PUGLIERO, S., MOURO, M.G., ROGERO, M.M., HIGA, E.M.S. Cupuaçu extract reduces nitrosative stress and modulates inflammatory mediators in the kidneys of experimental diabetes. Clinical Nutrition, v. 38 (1), p. 364-371, 2019. https://doi.org/10.1016/j.clnu.2017.12.016.
- SEDLACK, J.; LINDSAY, R. H. Estimation of total, protein bound, and nonprotein sulphydryl groups in tissue with Ellman’s reagent. Analytical Biochemistry, v. 25, 192-205, 1968. DOI: 10.1016/0003-2697(68)90092-4
- SILVA, E.M., SOUZA, J.N.S., ROGEZ, H., REES, J.F., LARONDELLE, Y. Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chemistry, v.101, n.3, p.1012-1018, 2007. https://doi.org/10.1016/j.foodchem.2006.02.055
- SOUZA, A.G.C., ALVES, R.M., SOUZA, M.G. Cupuaçu, Theobroma grandiflorum. IICA, Instituto Interamericano de Cooperación para la Agricultura, 24 p, 2017.
- SPADA, P.D.S., SOUZA, G.G.N., BORTOLINI, G.V., HENRIQUES, J.A.P., SALVADOR, M. Antioxidant, mutagenic, and antimutagenic activity of frozen fruits. Journal of Medicinal Food, v.11(1), p.144-151, 2008.doi: 10.1089/jmf.2007.598.
- STANKIEWICZ, A., SKRZYDLEWSKA, E., MAKIELA, M. Effects of amifostine on liver oxidative stress caused by cyclophosphamide administration to rats. Drug Metabolism and Drug Interactions, v.19(2), p.67-82, 2002. doi: 10.1515/dmdi.2002.19.2.67.
- VILLACHICA, H. Frutales y hortalizas promisorios de la Amazonia. Lima: Tratado de Cooperacción Amazonia, p. 33-42, 1996.
- VRIESMANN, L. C., PETKOWICZ, C.L.O. Polysaccharides from the pulp of cupuassu (Theobroma grandiflorum): Structural characterization of a pectic fraction, Carbohydrate Polymers, v. 77 (1), p. 72-79, 2009. ISSN 0144-8617. https://doi.org/10.1016/j.carbpol.2008.12.007.
- YAN, L. J., TRABER, M. G., PACKER, L. Spectrophotometric method for determination of carbonyls in oxidatively modified apolipoprotein B of human lowdensity lipoproteins. Analytical Biochemistry, v. 228, p. 349– 351, 1995. doi: 10.1006/abio.1995.1362
- YANG, H., PROTIVA, P., CUI, B., MA, C., BAGGETT, S., HEQUET, V., MORI, S., WEINSTEIN, B.E., KENNELLY, E.J. New Bioactive Polyphenols from Theobroma grandiflorum (“Cupuaçu”). Journal of Natural Products, v. 66, p. 1501-1504, 2003. https://doi.org/10.1021/np034002j