Resumo
Wood is a prevalent material in marine construction, both for fixed and mobile structures. However, the impact of xylophagous organisms diminishes its longevity by compromising its physical and mechanical properties. This study aimed to assess the influence of genetic variation and thermal treatment on the durability of Eucalyptus spp. wood against marine borers. Thermal modification was conducted in a kiln at 200 ºC for 14 hours, encompassing heating, exposure to peak temperature, and cooling stages. Two hybrids of E. grandis x E. urophylla, an E. grandis clone and an E. urophylla clone were tested. The experiment took place in the municipality of Pontal do Paraná (Paraná State, Brazil), using EN 275 (1992) guidelines with appropriate adaptations, during six months (summer and autumn). The extent of wood damage was visually evaluated, and damage intensity was categorized. All wood samples, irrespective of genetic material or thermal treatment, experienced attacks ranging from severe to complete infestation. Hence, the utilization of these species and hybrids in marine environments, whether in their natural state or after thermal modification, is not advisable given their insufficient resistance against marine borers.
Referências
- BONGERS F.; UPHILL, S. Performance of acetylated wood in aquatic applications. International Wood Products Journal, v. 10, n.3, p.95-101, 2019. DOI: https://doi.org/10.1080/20426445.2019.1621041
- British Standard. EN 275: wood preservatives - determination of the protective effectiveness against marine borers. Bruxelas: European Committee for Standardization; 1992, 16 p.
- BRITO, T. M.; FERREIRA, G.; MISSIA DA SILVA, J. G.; DE MENDONCA, A. R.; NETO, H. F.; PAES, J. B.; BATISTA, D. C. Resistance to biodeterioration of thermally modified Eucalyptus grandis and Tectona grandis short-rotation wood. Wood Material Science & Engineering, v.18, n.1, p.3-10, 2022. DOI: https://doi.org/10.1080/17480272.2022.2150985
- CANTERA, L.; ALONSO, R.; LUPO, S.; BETTUCCI, L.; AMILIVIA, A.; MARTÍNEZ, J.; DIESTE, A. Decay resistance of thermally modified Eucalyptus grandis wood against wild strains of Trametes versicolor and Pycnoporus sanguineus. Wood Material Science & Engineering, v.17, n.6, p.478-487, 2021. DOI: https://doi.org/10.1080/17480272.2021.1892185
- CARVALHO, D.E.; JUIZO, C.G.F.; FRANÇA, M.C.; LOIOLA, P.L.; ROCHA, M.P. Effect of thermal modification in the natural resistance of Eucalyptus grandis and Pinus taeda woods. Revista Brasileira de Ciências Agrárias, v.14, n.1, p. 1-7, 2019. DOI: https://doi.org/10.5039/agraria.v14i1a5606
- DONG,Y.; QIN, Y.; WANG, K.; YAN, Y.; ZAHNG, S.; LI, J.; ZAHNG, S. Assessment of the performance of furfurylated wood and acetylated wood: Comparison among four fast-growing wood species. Bioresources, v.11, n.2, p.3679-3690, 2016. DOI: https://doi.org/10.15376/biores.11.2.3679-3690
- FRANÇA, F.J.N.; FRANÇA, T.S.F.A.; ARANGO, R.; WOODWARD, B.M.; VIDAURRE, G.B. Variation in Natural Durability of Seven Eucalyptus grandis x Eucalyptus urophylla Hybrid Clones. Forest Products Journal, v.67, n. 3/4, p.230-235, 2017.
- JANUS, M.; CRAGG, S.; BRISCHKE, C.; MEYER VELTRUP, L.; WEHSENER, J. Laboratory screening of thermo-mechanically densified and thermally modified timbers for resistance to the marine borer Limnoria quadripunctata. European Journal of Wood and Wood Products, v. 76, p.393–396, 2018. DOI: https://doi.org/10.1007/s00107-017-1239-y
- KOLLMANN F.F.P.& COTE W.A.J. Principles of Wood Science and Technology. 1.ed. Berlin: Springe; 1968.
- LAZAROTTO, M.; CAVA, S.S.; BELTRAME, R.; GATTO, D.A.; MISSIO, A.L.; GOMES, L,G.; MATTOSO, T.R. Resistência biológica e colorimetria da madeira termorretificada de duas espécies de eucalipto. Revista Árvore, v.40, n.1, p.135-145, 2016. DOI: http://dx.doi.org/10.1590/0100-67622016000100015
- LEÃO, R.M.; MOURA, A.S.; LUZ, S.M.; DEL MENEZZI, C.H.S.H. Caracterização e avaliação da resistência biológica da madeira sobre o ataque de fungos. Revista Interdisciplinar de Pesquisa em Engenharia – RIPE, v. 4, n. 2, p.1-16, 2018.
- LINS, T.R.S.; SILVA, T.C.; ARAUJO, E.C.G.; ROCHA, M.P. Brocas marinhas e a biodeterioração da madeira no Brasil: uma revisão sistemática. Nativa, v.10, n.4, p. 495-505, 2022.
- DOI: https://doi.org/10.31413/nativa.v10i4.14083
- LINS, T.R.S.; SILVA, T.C.; RIETH, L.C.T.; MÜLLER, A.C.P.; LANA, P.C.; CADEMARTORI, P.H.G.; KLITZKE, R.J.; ROCHA, M.P. Evaluation of marine borers attack on treated wood in Southern Brazil. Holzforschung, v.77, n.4, p.1-10, 2023.
- DOI: https://doi.org/10.1515/hf-2022-0164
- MEDEIROS NETO, P.N.; PAES, J.B.; GONÇALVES, F.G.; LÓPEZ, Y.M.; BARAÚNA, E.E.P.; RIBEIRO, L.S. Relation of physicochemical characteristics on biological resistance of eucalypts woods to xylophagous termites. Journal of Building Engineering, v.52, n.15, p.1-8, 2022. DOI: https://doi.org/10.1016/j.jobe.2022.104462
- MELO, R.R.; SILVA, A.G.M.F.; SABINO, M., STANGERLIN, D.M.; BATISTA, F.G.; SOUZA, M.J.C. Efeito do tratamento térmico sobre a resistência da madeira de cambará a cupins subterrâneos. Revista de Ciências Agrárias, v.42, n.3, p. 786-791, 2019.
- DOI: https://doi.org/10.19084/rca.17079
- MODES, K.S.; SANTINI, E.J.; VIVIAN, M.A.; GARLET, A. Influência da termorretificação na resistência a degradação biológica das madeiras de Pinus taeda e Eucalyptus grandis. Ciência Florestal, v. 27, n.3, p.993–1002, 2017.
- DOI: https://doi.org/10.5902/1980509828672
- MOREIRA, E.L.; FAZION, H.; RIBEIRO, E.S. Variação dos teores de extrativos de três espécies florestais. Biodiversidade, v. 15, n.2, p. 163-172, 2016.
- MÜLLER, A.C.P.; LANA, P.C. Manual de identificação de moluscos bivalves da família dos teredinídeos encontrados no litoral brasileiro. 1. ed. Curitiba: UFPR; 2004.
- PALANTI, S.; STEFANI, F.; ANDRENACCI, M.; FAIMALI, M.; GUARNERI, I.; SIGOVINI, M.; TAGLIAPIETRA, D. BIOLOGICAL Resistance of Acetylated Radiata Pine, European Beech, and MDF against Marine Borers at Three Italian Sites after Five Years Immersion. Forests, v.13, n.5, p.1-6, 2022.
- DOI: https://doi.org/10.3390/f13050636
- REIS, C.S.; FRANÇA, H.T.S.; MOTYL, T.; CORDEIRO, T.S.; ROCHA, J.R.C. Avaliação da Atividade Antrópica no Rio Guaraguaçú (Pontal do Paraná, Paraná). Engenharia Sanitária Ambiental, v.20, n.3, p.389-394, 2015. DOI: https://doi.org/10.1590/S1413-1522015020000112471
- ROSZAINI, K.; SALMIAH, U. Resistance of five timber species to marine borer attack. Journal of Tropical Forrest Science, v. 27, n.3, p. 400-412, 2015.
- DOI: http://www.jstor.org/stable/43490298
- SIMEPAR. Boletim climatológico. Available from: http://www.simepar.br/prognozweb/simepar/timeline/boletim_climatologico?page=2# Accessed in 13 May 2024.
- TREVISAN, H.; LATORRACA, J.V.F.; SANTOS, A.L.P.; TEIXEIRA, J.G.; CARVALHO, A.G. Analysis of rigidity loss and deterioration from exposure in a decay test field of thermorectificated Eucalyptus grandis wood. Maderas, v.16, n.2, p.217-226, 2014.
- DOI:https://doi.org/10.4067/S0718-21X2014005000017
- TRUGILHO, P.F.; ASSIS, M.R.; LOUREIRO, B.A.; SIMETTI, R.; LIMA, L.V.L.; RODRIGUES, T.A.F.; MENDES, F.M. Efeito do material genético e tipo de solvente na quantificação de compostos solúveis da madeira em clones de Eucalyptus. Brazilian Journal of Animal and Environmental Research, v. 3, n. 2, p.785-792, 2020. DOI: https://doi.org/10.34188/bjaerv3n2-038
- VIVIAN, M.A.; MENEGUSSI, M.; SOLDI, C.; MODES, K.S. Quality and efficiency of tannin and additives in the preservation of Pinus taeda wood against decay. Advances in Forestry Science, v. 9, n. 2, p. 1773-1780, 2022.
- DOI: https://doi.org/10.34062/afs.v9i2.13255
- WESTIN, M.; RAPP, A.; NILSSON, T. Field test of resistance of modified wood to marine borers, Wood Material Science and Engineering, v.1, n.1, p.34-38, 2006. DOI: https://doi.org/10.1080/17480270600686978
- YANG, H.; GAO, M.; WANG, J.; MU, H.; QI, D. Fast Preparation of High-Performance Wood Materials Assisted by Ultrasonic and Vacuum Impregnation. Forests, v.12, n.5, p.1-12, 2021.
- DOI: https://doi.org/10.3390/f12050567