Skip to main content Skip to main navigation menu Skip to site footer
Agricultural Science
Published: 2024-10-22

Oxidative stress in Oenocarpus bacaba and Oenocarpus mapora submitted to water deficit

Universidade Federal Rural da Amazônia
Universidade Federal Rural da Amazônia
Universidade Federal Rural da Amazônia
Universidade Federal Rural da Amazônia
Universidade Federal Rural da Amazônia
Universidade Federal Rural da Amazônia
Universidade Federal Rural da Amazônia
hydrical stress antioxidant activity metabolism

Abstract

The objective of this work was to evaluate the effects of oxidative stress generated by water deficiency and rehydration of the species Oenocarpus bacaba Mart. and Oenocarpus mapora H. Karsten. For this, six-month-old seedlings from the Aimex Germplasm Bank were transplanted into 6.0 kg pots of substrate. After that, the plants underwent acclimatization for 85 days, starting the water stress treatment. Collections for biochemical analysis were performed at 0, 15, 30 and 35 days. A completely randomized design (DIC) was used in a 2 x 2 x 4 factorial scheme, with two cultures (Bacaba and Bacabi), two treatments (stress and control), four periods and five replications. Water stress brought down CRA and carotenoid levels and increased levels of electrolyte leakage. In general, the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) enzymes increased in plants during stress and experienced after 5 days of rehydration. Oenocarpus mapora was more sensitive to stress, as it is little domesticated, unlike Oenocarpus bacaba, which is more cultivated. Both recovered after the rehydration period.

References

  1. Campelo, D. de H.; Lacerda, C. F.; Sousa, J. A.; Correia, D.; Bezerra, A. M. E.; Araújo, J. D. M.; Neves, A. L. R. Trocas gasosas e eficiência do fotossistema II em plantas adultas de seis espécies florestais em função do suprimento de água no solo. Revista Árvore, v. 39, p. 973-983, 2015. <https://doi.org/10.1590/0100-67622015000500020>.
  2. Chung, W. Unraveling new functions of superoxide dismutase using yeast model system: Beyond its conventional role in superoxide radical scavenging. The Journal of Microbiology, v. 55, n. 6, p. 409, 2017. <https://doi.org/10.1007/s12275-017-6647-5>.
  3. Demidchik, Vadim. Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environmental and experimental botany, v. 109, p. 212-228, 2015. <https://doi.org/10.1016/j.envexpbot.2014.06.021.
  4. Freitas, M. A. M. de; Lins, H. A.; Souza, M. de F.; Carneiro, G. D. O. P.; Mendonça, V.; Silva, D. V. Water deficit on growth and physiological indicators of Bidens pilosa L. and Bidens subalternans DC. Revista Caatinga, v. 34, p. 388-397, 2021. <https://doi.org/10.1590/1983-21252021v34n215rc>.
  5. Garcia-Caparros, P.; De Filippis, L.; Gul, A.; Hasanuzzaman, M.; Ozturk, M.; Altay, V.; Lao, M. T. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. The Botanical Review, v. 87, p. 421-466, 2021. <https://doi.org/10.1007/s12229-020-09231-1>.
  6. Guerrini, I. A.; Silva, M. R. da; Saad, J. C. C. L.; Freitas, C. Estresse hídrico em plantio de Eucalyptus grandis vs. Eucalyptus urophylla, em função do solo, substrato e manejo hídrico de viveiro. Revista Árvore, v. 35, p. 31-39, 2011.< https://doi.org/10.1590/S0100-67622011000100004>.
  7. Hasanuzzaman, M.; Bhuyan, M. B.; Zulfiqar, F.; Raza, A.; Mohsin, S. M.; Mahmud, J. A.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, v. 9, n. 8, p. 681, 2020. <https://www.mdpi.com/2076-3921/9/8/681#>.
  8. Leitman, P.; Judice, D.M.; Barros, F.S.M.; Prieto, P.V. Arecaceae. In: Martinelli, G.; Moraes, M.A. (Org.). Livro Vermelho da Flora do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, v. 1, p. 187-195, 2013.
  9. Liu, Y.; He, C. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. Plant Cell Reports, v. 35, p. 995-1007, 2016. <https://doi.org/10.1007/s00299-016-1950-x>.
  10. Maruta, T.; Sawa, Y.; Shigeoka, S.; Ishikawa, T. Diversity and evolution of ascorbate peroxidase functions in chloroplasts: more than just a classical antioxidant enzyme?. Plant and Cell Physiology, v. 57, n. 7, p. 1377-1386, 2016. < https://doi.org/10.1093/pcp/pcv203>.
  11. Mittler, R.; Zandalinas, S. I.; Fichman, Y.; Van Breusegem, F. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, v. 23, n. 10, p. 663-679, 2022. <https://doi.org/10.1038/s41580-022-00499-2>
  12. Neves, L. T. B. C.; Campos, D. C. D. S.; Mendes, J. K. S.; Urnhani, C. O.; Araújo, K. G. M. de. Qualidade de frutos processados artesanalmente de açaí (Euterpe oleracea Mart.) e bacaba (Oenocarpus bacaba Mart.). Revista Brasileira de Fruticultura, v. 37, p. 729-738, 2015. <https://doi.org/10.1590/0100-2945-148/14>.
  13. Peloso, A. F.; Tatagiba S. D.; Reis E.F.; Pezzopane J. E. M.; Amaral J. F. T. Photosynthetic limitations in leaves of arabic coffee promoted by the water deficit. Coffee Science, v. 12, n. 3, p. 389-399, 2017. <https://doi.org/10.25186/cs.v12i3.1314>.
  14. Pereira, Y. C.; Rodrigues, W. S.; Lima, E. J. A.; Santos, L. R.; Silva, M. H. L.; Lobato A. K. S. Brassinosteroids increase electron transport and photosynthesis in soybean plants under water deficit. Photosynthetica, v. 57, n. 1, p. 181-191, 2019.<https://doi.org/10.32615/ps.2019.029>.
  15. Raza, A.; Salehi, H.; Rahman, M. A.; Zahid, Z.; Madadkar Haghjou, M.; Najafi-Kakavand, S; Charagh, S.; Osman, H. S.; Albaqami, M.; Zhuang, Y.; Siddique, K. H. M; Zhuang, W. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. Frontiers in Plant Science, v. 13, 2022. < https://doi.org/10.3389/fpls.2022.961872>.
  16. Rodrigues, A. L. Efeito da reidratação nos parâmetros ecofisiológicos da Copaifera langsdorffii DESF. São Paulo: Universidade Estadual Paulista “Julio de Mesquita Filho”, 2013. 85p. Dissertação Mestrado.
  17. Said Al Busaidi, K. T.; Farag, K. M. The use of electrolyte leakage procedure in assessing heat and salt tolerance of Ruzaiz date palm (Phoenix dactylifera L.) cultivar regenerated by tissue culture and offshoots and treatments to alleviate the stressful injury. Journal of Horticulture and Forestry, v. 7, n. 4, p. 104-111, 2015. <https://doi.org/10.5897/JHF2014.0378>.
  18. Santos, M. de F. G. D.; Alves, R. E.; Brito, E. S. de; Silva, S. de M.; Silveira, M. R. S. da. Características de qualidade de frutos e óleos de palmeiras nativas da Amazônia brasileira. Revista Brasileira de Fruticultura, v. 39, n. spe, 2017. <https://doi.org/10.1590/0100-29452017305>.
  19. Seixas, F. R. F.; Sesquim, E. A. R.; Raasch, G. S.; Cintra, D. E. Physicochemical characteristics and lipid profile of the bacaba occurring in the western Amazon. REBRAPA-Brazilian Journal of Food Research, v. 7, n. 3, p. 105-116, 2016. <http://dx.doi.org/10.3895/rebrapa.v7n3.3806 >.
  20. Silva, A. J. B. da; Sevalho, E. de S.; Miranda, I. P. de A. Potencial das palmeiras nativas da Amazônia Brasileira para a bioeconomia: análise em rede da produção científica e tecnológica. Ciência Florestal, v. 31, p. 1020-1046, 2021. <https://doi.org/10.5902/1980509843595>.

How to Cite

Baptista, K. R. S. D. P., Moraes, M. P. D., Marcelina da Silva, T., Jesus, K. M. D., Nogueira, G. A. D. S., Bronze, A. B. D. S., & Oliveira Neto, C. F. D. (2024). Oxidative stress in Oenocarpus bacaba and Oenocarpus mapora submitted to water deficit. Scientific Electronic Archives, 17(6). https://doi.org/10.36560/17620241987