Resumo
A temperatura é um fator que interfere diretamente na capacidade germinativa de sementes. Com as elevações de temperaturas ocasionadas pelo aquecimento global, assim como em situações de cultivo protegido de plantas em ambientes tropicais e subtropicais, é necessário estudar procedimentos que possam contribuir para aumento da tolerância a temperaturas que causam estresse e alteração em processos fisiológicos. Desta forma, o objetivo desse trabalho foi avaliar o efeito do condicionamento fisiológico de sementes de couve com diferentes doses de extrato da alga marrom Ascophyllum nodosum na germinação e crescimento de plantas em diferentes temperaturas. Realizou-se o experimento em delineamento experimental inteiramente casualizado, com esquema fatorial 2 x 4 (temperaturas x doses), com cinco repetições. Os tratamentos consistiram das doses de 0; 0,25; 0,50; 1,0 ml. L-1 de extrato da alga marrom Ascophyllum nodosum. O efeito dos tratamentos foi avaliado por meio de: porcentagem e velocidade de germinação, comprimento e massa seca da parte aérea e de raízes de plântulas, em condições de temperatura ideal (20°C) e de estresse (30°C). O condicionamento de sementes de couve com extrato da alga marrom Ascophyllum nodosum não interfere na germinação de sementes, tanto em condição ideal quanto em temperatura elevada (30°C); o condicionamento de sementes de couve com as doses de 0,67 e 0,25 mL.L-1, promove maior crescimento de raízes de plântulas, nas temperaturas de germinação de 20 e 30°C, respectivamente, contudo, não promove incrementos no crescimento de parte aérea e no acúmulo de massa seca total de plântulas.
Referências
- BEDINI, A., MERCY, L., SCHNEIDER, C., FRANKKEN, P., LUCIC-MERCY, L. Unraveling the Initial Plant Hormone Signaling, Metabolic Mechanisms and Plant Defense Triggering the Endomycorrhizal Symbiosis Behavior. Frontiers in Plant Science, vol.9, pag. 1-28, 2018.
- BEWLEY, J.D., BRADFORD, K., HILHORST, H.; NONOGAKI, H. Seeds: physiology of development, germination and dormancy. 3rd ed. New York: Springer, 2013. 392p.
- BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. BrasÃlia, DF: MAPA/ACS, 2009a. 395p.
- BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Manual de Análise
- Sanitária de Sementes. BrasÃlia, 2009b. 202p.
- CHOJNACKA K., SAEID, A., WITKOWSKA, Z., TUHY, L. Biologically active compounds in seaweed extracts—the prospects for the application. The Open Conference Proceedings Journal, vol.3, n.1, p.20–28, 2012.
- CHUNTHABUREE, S., SANITCHON, J., PATTANAGUL, W., THEERAKULPISUT, P. Alleviation of salt stress in seedlings of black glutinous rice by seed priming with spermidine and gibberellic acid. Notulae Botanicae Horti Agrobotanici, vol. 42, n.2, p.405–413, 2014.
- DOTTO, L.; SILVA, V.N. Beet seed priming with growth regulators. Semina: Ciencias Agrarias, vol. 38, p.1785–1798, 2017.
- DUTTA, S.K., LAYEK, J., AKOIJAM, R.S., BOOPATI, T., VANLALHMANGAIHA, S.S., SING, S.B., PRAKASH, N. Seaweed extract as natural priming agent for augmenting seed quality traits and yield in Capsicum frutescens L. Journal of Applied Phycology, vol.31, p.3803–3813, 2019.
- FERREIRA, R.L.; FORTI, V.A., SILVA, V.N., MELO, S.C. Temperatura inicial de germinação no desempenho de plântulas e mudas de tomate. Ciência Rural, vol.43, n.7, p.1189-1195, 2013.
- HAMZA, B. SUGGARS, A. Biostimulants: myths and realities. TurfGrass Trends, vol. 8, p.6–10, 2001.
- IBRAHIM, E.A. Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, vol. 192, p.38–46, 2016.
- LIU, J., HASANUZZAMAN, M., WEN, H., ZHANG, J., PENG, T., SUN, H., ZHAO, Q. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma, vol. 256, p.1217–1227, 2019.
- MA, H.Y., ZHAO, D.D., NING, Q.R., WEI, J.P., WANG, M.M., LIU, X.L., JIANG, C.J., LIANG, Z.W. A Multi-year Beneficial Efect of Seed Priming with Gibberellic Acid-3 (GA3) on Plant Growth and Production in a Perennial Grass, Leymus chinensis. Nature Scientific Reports, vol.8, p.1-8, 2018.
- MAGUIRE, J. D. Speed of germination aid in selection and evaluation for seeding emergence and vigor. Crop Science, vol. 2, n. 2, p. 76-177, 1962.
- MAL, D., VERMA, J., LEVAN, A., REDDY, M.R., AVINASH, A.V., VELAGA, P.K. Seed Priming in Vegetable Crops: A Review. International Journal of Current Microbiology and Applied Sciences, vol. 8, n. 06, p. 868-874, 2019.
- MATOS, A.C.B., BORGES, E.E.L., SILVA, L.J. Fisiologia da germinação de sementes de Dalbergia nigra (vell.) allemão ex benth) sob diferentes temperaturas e tempos de
- Exposição. Revista Ãrvore, vol.39, n.1, p.115-125, 2015.
- MASKOVA, T.; HERBEN, T. Root: shoot ratio in developing seedlings: How seedlings change their allocation in response to seed mass and ambient nutrient supply. Ecology and evolution, vol. 8, n.14, p. 7143–7150, 2018.
- NAKAGAWA, J. Testes de vigor baseados no crescimento de plântulas. In: VIEIRA, R.D.; CARVALHO, N.M. de. Testes de vigor em sementes. Jaboticabal: FUNEP. p. 164,1999.
- PANDEY, P., BHANUPRAKASH K. Effect of Seed Priming on Seed Germination and Vigour in Fresh and Aged Seeds of Cucumber. International Journal of Environment, Agriculture and Biotechnology, vol. 2, n.4, p. 2261- 2264, 2017.
- PAPARELLA, S., ARAUJO, S.S., ROSSI, G., WIJAYASINGHE, M., CARBONERA, D., BALESTRAZZI, A. Seed priming: state of the art and new perspectives. Plant Cell Reports, vol.34, p.1281–1293, 2015.
- POUITOT, A., CRABOS, A., PETRIK, I., NOVAK, O., KROUK, G., LACOMBE, B., RUFFEL, S. Responses to Systemic Nitrogen Signaling in Arabidopsis Roots Involve trans-Zeatin in Shoots. The Plant Cell, Vol. 30: 1243–1257, 2018.
- SHU, K., LIU, X.D., XIE, Q., HE, Z.H. Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Molecular Plant, vol. 9, p.34–45, 2016.
- SHER, A., SARWAR, T., NAWAZ, A., IJAZ, M., SATTAR, A., AHMAD, S. Methods of seed priming. In: HASANUZZAMAN, M.; FOTOPOULOS, V. (ORGS). Priming and pretreatement of seeds and seedlings-implication in plant stress tolerance and enhancing productivity of crops. Singapore: Springer. 2019. p.20-29.
- SIVRITEPE, H.; SIVRITEPE, N. Organic seed hydration-dehydration techniques improve seedling quality of organic tomatoes. Notulae Botanicae Horti Agrobotanici, vol.44, n.2, p. 399-403, 2016.
- SORGATTO, P. K.; SILVA, V. N. Embebição de sementes de salsa com Ascophyllum nodosum: efeitos na germinação e crescimento de plântulas sob estresse térmico. Acta Biológica Catarinense, vol. 5, p.98-106, 2018.
- VISHAL, B., KUMAR, P.P. Regulation of Seed Germination and Abiotic Stresses by Gibberellins and Abscisic Acid. Frontiers in Plant Science, vol.20, p.1-15, 2018.
- WALLY, O. S. D., CRITCHLEY, A. T., HILTZ, D., CRAIGIE, J. S., HAN, X., ZAHARIA, L. I. Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation, vol. 32, p.324–339, 2013.