Skip to main content Skip to main navigation menu Skip to site footer
Agricultural Science
Published: 2023-04-30

Cost-benefit analysis of the use of carp pituitary extract and GnRH analogues in the induced spawning of tambaqui Colossoma macropomum

Universidade Federal do Amazonas
Embrapa Amazônia Ocidental
Embrapa Pesca e Aquicultura
Embrapa Amazônia Ocidental
fish farming, economics, pituitary extract

Abstract

In the fish farming industry, some species do not spawn under farming conditions due to the lack of natural stimuli, which is essential for the final maturation of gametes and ovulation. In such cases, treatments with exogenous hormones are necessary to obtain larvae, which then maintain the entire production line. Currently, the production of tambaqui larvae is based on the administration of carp pituitary extract (CPE), which is an efficient biological product, but without identification and quantification of the bioactives present in it, in addition to representing a possible carrier of diseases from the donor fish (carp) to tambaqui. However, on the market there are synthetic hormones (GnRH analogues) able to induce the reproduction of tambaqui in captivity, and that have already been tested for this purpose, with good results. However, the analysis of the cost-efficiency of the use of these substances in the induced reproduction of fish are still lacking. The goal of this work was to evaluate the cost-effectiveness of using commercial synthetic hormones analogues to GnRH compared to CPE. For this, 28 females were induced with gonadorelin (Profertil®), buserelin acetate (Sincroforte®), salmon GnRH analogue - sGnRHa (Ovaprim®) and CPE (n = 7/treatment). The cost of each dose per kilogram of body weight (BW) and the spawning response to each hormonal treatment, considering spawning rate, relative fecundity, fertilization rate and hatching rate, were evaluated. sGnRHa was the most expensive treatment in the production of hatched larvae, followed by gonadorelin and CPE, while buserelin had a price up to 90% lower than the other products.

References

  1. ABBAS, G.; KASPRZAK, R.; MALIK, A.; GHAFFAR, A.; FATIMA, A.; HAFEEZ-UR-REHMAN, M.; KAUSAR, R.; AYUB, S.; SHUAIB, N. Optimized spawning induction of blackfin sea bream, Acanthopagrus berda (Forsskål, 1775) in seawater ponds using Ovaprim hormone, with general remarks about embryonic and larval development. Aquaculture, v. 512, p. 734387, 2019. https://doi.org/10.1016/j.aquaculture.2019.734387
  2. AIZEN, J.; HOLLANDER-COHEN, L.; SHPILMAN, M.; LEVAVI-SIVAN, B. Biologically active recombinant carp LH as a spawning-inducing agent for carp. Journal of Endocrinology, v. 232, n. 3, p. 391–402, 2017. https://doi.org/10.1530/JOE-16-0435
  3. ANDRADE, E. S.; CARVALHO, A. F. S.; FERREIRA, M. R.; PAULA, F. G.; RODRIGUES, F. S.; FELIZARDO, V. O.; REIS NETO, R. V; MURGAS, L. D. S. Indutores hormonais na reprodução artificial de curimba (Prochilodus lineatus). Revista Brasileira de Reprodução Animal, v. 38, n. 4, p. 230–236, 2014. http://cbra.org.br/pages/publicacoes/rbra/v38n4/pag230-236%20(RB519).pdf
  4. ARAÚJO-LIMA, C. A. R. M.; GOMES, L. C. Tambaqui (Colossoma macropomum). In: Baldisserotto, B.; Gomes, L. C. (Eds.). Espécies Nativas para Piscicultura no Brasil. Santa Maria, UFSM, 470 p. 2005. Pp. 175-193.
  5. AYA, B. E.; ARIAS, C. J. Reproducción inducida de Pimelodus pictus con extracto de hipófisis de carpa (EHC) y Ovaprim®. Revista MVZ Cordoba, v. 16, n.1, p. 2317–2323, 2011. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-02682011000100007
  6. CAROLSFELD, J.; RAMOS, S. M.; ORMANEZI, R.; GOMES, J. H.; BARBOSA, J. M.; HARVEY, B. Analysis of protocols for application of an LHRH analog for induced final maturation and ovulation of female pacu (Piaractus mesopotamicus Holmberg 1887). Aquaculture, v. 74, n. 1–2, p. 49–55, 1988. https://doi.org/10.1016/0044-8486(88)90085-3
  7. DONALDSON, E. M.; HUNTER, G. A. Induced final maturation, ovulation, and spermiation in cultured fish. In: Hoar, W.S., Randall, D.J., Donaldson, E.M. Eds., Fish Physiology, v. 9, Academic Press, Orlando, FL. p. 351–403, 1983.
  8. FELIZARDO, V. O.; MURGAS, L. D. S.; ANDRADE, E. S.; LÓPEZ, P. A.; FREITAS, R. T. F.; FERREIRA, M. R. Effect of timing of hormonal induction on reproductive activity in lambari (Astyanax bimaculatus). Theriogenology, v. 77, n. 8, p. 1570–1574, 2012. https://doi.org/10.1016/j.theriogenology.2011.11.025
  9. HILSDORF, A. W. S. et al. The farming and husbandry of Colossoma macropomum: From Amazonian waters to sustainable production. Reviews in Aquaculture, v. 14, n. 2, p. 993–1027, 2022. https://doi.org/10.1111/raq.12638
  10. HOSSAIN, M. B. et al. Comparative Study of Carp Pituitary Gland (PG) Extract and Synthetic Hormone Ovaprim Used in the Induced Breeding of Stinging Catfish, Heteropneustes fossilis (Siluriformes: Heteropneustidae). Our Nature, v. 10, n. 1, p. 89–95, 2013. https://doi.org/10.3126/on.v10i1.7755
  11. IBGE. Tabela 3940: Produção da aquicultura, por tipo de produto Sistema IBGE de Recuperação Automática - SIDRA, 2021. Disponível em: <https://sidra.ibge.gov.br/tabela/3940> Acesso em 21 out 2022.
  12. LEE, C. S.; TAMARU, C. S.; KELLEY, C. D. The cost and effectiveness of CPH, HCG and LHRH-a on the induced spawning of grey mullet, Mugil cephalus. Aquaculture, v. 73, n. 1–4, p. 341–347, 1988. https://doi.org/10.1016/0044-8486(88)90067-1
  13. PADULA, A. M. GnRH analogues—agonists and antagonists. Animal Reproduction Science, v. 88, n. 1–2, p. 115–126, 2005. https://doi.org/10.1016/j.anireprosci.2005.05.005
  14. PEIXE BR. Associação Brasileira da Piscicultura - Anuário Brasileiro da Piscicultura Peixe BR, p. 140, 2022.
  15. PEREIRA, T. S. B.; BOSCOLO, C. N. P.; MOREIRA, R. G.; BATLOUNI, S. R. The use of mGnRHa provokes ovulation but not viable embryos in Leporinus macrocephalus. Aquaculture International, v. 25, n. 2, p. 515–529, 2017. https://doi.org/10.1007/s10499-016-0049-2
  16. PEREIRA, T. S. B.; BOSCOLO, C. N. P.; MOREIRA, R. G.; BATLOUNI, S. R. Leporinus elongatus induced spawning using carp pituitary extract or mammalian GnRH analogue combined with dopamine receptor antagonists. Animal Reproduction, v. 15, n. 1, p. 64–70, 2018. http://dx.doi.org/10.21451/1984-3143-2017-AR983
  17. PETER, R. E.; YU, K. L. Neuroendocrine regulation of ovulation in fishes: Basic and applied aspects. Reviews in Fish Biology and Fisheries, v. 7, n. 2, p. 173–197, 1997. https://doi.org/10.1023/A:1018431610220
  18. SHARAF, S. M. Effect of GnRHa, pimozide and Ovaprim on ovulation and plasma sex steroid hormones in African catfish Clarias gariepinus. Theriogenology, v. 77, n. 8, p. 1709–1716, 2012. https://doi.org/10.1016/j.theriogenology.2011.12.019
  19. WOYNÁROVICH, A.; VAN ANROOY, R. Field guide to the culture of tambaqui Colossoma macropomum, Cuvier, 1816. FAO Fisheries and Aquaculture Technical Paper vol. 624. Rome, FAO. 132 pp. 2019. https://www.fao.org/3/ca2955en/CA2955EN.pdf
  20. ZANIBONI FILHO, E.; BARBOSA, D. C. Priming hormone administration to induce spawning of some Brazilian migratory fish. Revista Brasileira de Biologia. v. 56, p. 655–659, 1996.

How to Cite

Oliveira, R. G. de S., Pinheiro, J. O. C., Pedroza-Filho, M. X. ., & O'Sullivan, F. L. de A. . (2023). Cost-benefit analysis of the use of carp pituitary extract and GnRH analogues in the induced spawning of tambaqui Colossoma macropomum. Scientific Electronic Archives, 16(5). https://doi.org/10.36560/16520231689