Ir para o conteúdo principal Ir para o menu de navegação principal Ir para o rodapé
Ciências Biológicas
Publicado: 2024-08-28

A co-inoculação de (Azospirillum brasilense) e (Bradyrhizobium spp.) promove crescimento em Feijão-Caupí no Semiárido Baiano

Universidade do Estado da Bahia
Universidade do Estado da Bahia
Universidade do Estado da Bahia
Universidade do Estado da Bahia
Universidade do Estado da Bahia
Universidade do Estado da Bahia
Universidade do Estado da Bahia
Biotecnologia, Rizóbio, Vigna unguiculata (L.) Walp.

Resumo

O estudo avaliou o crescimento inicial de plantas de Feijão-Caupí inoculadas com as estirpes BR’s 3262, 3267 e Azospirillum brasilense em solo representativo do Vale do Submédio São Francisco. Foi realizado em casa de vegetação com sombreamento de 45%, na Universidade do Estado da Bahia utilizando vasos plásticos com capacidade para 5kg. Quarenta e cinco unidades amostrais foram distribuídas em 9 tratamentos (T1: controle absoluto; T2: controle nitrogenado; T3: inoculação BR3262; T4: inoculação BR3267; T5: inoculação A.brasilense; T6: BR3262 + A.brasilense; T7: BR3267 + A.brasilense; T8: BR3262 + A.brasilense + 10% de N; T9: BR3267 + A.brasilense + 10% de N) com cinco repetições, avaliando parâmetros de promoção de crescimento de comprimento e massas frescas e secas de parte aérea e raízes e fisiológicos de índice SPAD e atividade da enzima Redutase do Nitrato. Os dados coletados foram agrupados pelo teste de Scott-Knott à 5 de probabilidade. A co-inoculação mostrou resultados positivos no crescimento das plantas, indicando o potencial dos microrganismos na agricultura. A combinação das estirpes BR3262 e A.brasilense se destacou como promissora para o cultivo do Feijão-Caupí no Semiárido Baiano. O estudo demonstra a viabilidade desses microrganismos como alternativa para o aumento da produtividade agrícola.

Referências

  1. ARMENDARIZ, A. L.; TALANO, M. A.; NICOTRA, M. F.; ESCUDERO, L.; BRESER, M. L.; PORPORATTO, C.; AGOSTINI, E. Impacto double inoculation with Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 on soybean plants grown under arsenic stress. Plant Physiology and Biochemistry. v.138, n.26, p.35, maio. 2019. DOI: 10.1016/j.plaphy.2019.02.018.
  2. ARORA, N. K.; VERMA, M.; MISHRA, J. Rhizobial Bioformulations: Past, Present and Future. In: MEHNAZ S. (Ed.). Rhizotrophs: Plant Growth Promotion to Bioremediation. Lucknow, Uttar Pradesh, Índia: PUBLISHING COMPANY: SINGAPURA: SPRINGER 2017, p.69-99.
  3. BARBOSA, J. Z.; HUNGRIA, M.; SENA, J. V.; POGGERE, G.; REIS, A. R.; CORRÊA, R. S. Meta-analysis reveals benefits of co-inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. Applied Soil Ecology. v.163, p.193913, jun. 2021. DOI: 10.1016/j.apsoil.2021.103913.
  4. BARNAWAL, D.; SINGH, R.; SINGH, R. P. Role of plant growth promoting rhizobacteria in drought tolerance: regulating growth hormones and osmolytes. In: AJAY AKS (Ed.). PGPR Amelioration in Sustainable Agriculture. Kumar PKS: WOODHEAD PUBLISHING, 2019 p.107-128, DOI: http://dx.doi.org/10.1016/B978-0-12-815879-1.00006-9.
  5. BELGOFF, C.; TORDABLÉ, M. D.; CASTRO, S. Influence of nitrate on nodule structure and nitrate reductase activity in a peanut cultivar. In: CARBONE K (Ed.). Cultivars: Chemical Properties, Antioxidant Activities and Health Benefits, New York: SCIENCE PUBLISHERS, 2013, p. 33-46.
  6. BERGER, A.; BOSCARI, A.; HORTA, A. N.; MAUCOURT, M.; HANCHI, M.; BERNILLON, S.; ROLIN, D.; PUPPO, A.; BROUQUISSE, R. Plant nitrate reductases regulate nitric oxide production and nitrogen-fixing metabolism during the Medicago truncatula—Sinorhizobium meliloti symbiosis. Frontiers in Plant Science. v.11, p.1313, set. 2020. DOI: 10.3389/fpls.2020.01313.
  7. BHATTI, A. A.; HAQ, S.; BHAT. R. A. Actinomycetes benefaction role in soil and plant health. Microbial Pathogenesis. 2017 Out v.111, p.458-467, Out. 2017. DOI: 10.1016/j.micpath.2017.09.036.
  8. CARVALHO, M.; CASTRO, I.; MOUTINHO-PEREIRA, J.; CORREIA, C; EGEA-CORTINES, M.; MATOS, M.; ROSA, E.; CARNIDE, V.; LINO, NT. Evaluating stress responses in cowpea under drought stress, Journal of Plant Physiology. v.241, p.153001, Out. 2019. DOI: 10.1016/j.jplph.2019.153001.
  9. CASSÁN, F.; CONIGLIO, A.; LÓPEZ, G.; MOLINA, R.; NIEVAS, S.; CARLAN, C. N.; DONADIO, F.; TORRES, D.; ROSAS, S.; PEDROSA, F. O. Everything you must know about Azospirillum and its impact on agriculture and beyond. Biol. Fertil. Soils, 2020 Mai v.56, p.461-479, Maio. 2020. DOI: 10.1007/s00374-020-01463-y
  10. CASSÁN, F.; DIAZ-ZORITA, M. Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biology and Biochemistry. v.103, p.117-130, Dez. 2016. DOI: 10.1016/j.soilbio.2016.08.020.
  11. CASTAÑEDA, C.; ALMANZA-MERCHÁN, P.; PINZÓN-SANDOVAL, E.; CELY, G.; SERRANO P. Estimación de la concentración de clorofila mediante métodos no destructivos en vid (Vitis vinifera L.) cv. Riesling Becker. Rev. Colomb. Cienc. Hortícolas, v.12, n.2, p.329–337, Maio. 2018. DOI: http://dx.doi.org/10.17584/rcch.2018v12i2.7566.
  12. CHIBEBA, A. M.; GUIMARÃES, M. D. F.; BRITO, O. R.; NOGUEIRA, M. A.; ARAUJO, R. S.; HUNGRIA M. Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. Am. J. Plant Sci. v.6, n.10, p. 1641-1649, Jun. 2015. DOI: 10.4236/ajps.2015.610164
  13. CIAMPITTI, I. A.; SALVAGIOTTI F. New insights into soybean biological nitrogen fixation. Agronomy Journal. v.10, n.4, p. 1885-1196, Jul. 2018. DOI:10.2134/agronj2017.06.0348
  14. CONAB: COMPANHIA NACIONAL DE ABASTECIMENTO. Acompanhamento da safra brasileira de grãos Safra 2021/22. Disponível em: <https://www.conab.gov.br/info-agro/safras/> Acesso em: 12 abr 2023.
  15. DÖBEREINER J. Biological nitrogen fixation in the tropics: Social and economic contributions. Soil Biology and Biochemistry. v.29, n.5, p.771-777, Jun. 1997. DOI: 10.1016/S0038-0717(96)00226-X.
  16. ELGAWAD, H.; ABUELSOUD, W.; MADANY, M. M. Y.; SELIM, S.; ZINTA, G.; MOUSA, A. S. M.; HOZZEIN, W. N. Actinomycetes Enrich Soil Rhizosphere and Improve Seed Quality as well as Productivity of Legumes by Boosting Nitrogen Availability and Metabolism. Biomolecules, v.10, n.12, p.1675, Dez 2020. DOI: https://doi.org/10.3390/biom10121675.
  17. FAGOTTI, D. S.; ABRANTES, J. L. F.; CEREZINI, P.; FUKAMI, J.; NOGUEIRA, M. A.; CERRO, P.; FERNÁNDEZ, R. V.; OLLERO, F. J.; MEGIAS, O. M. Quorum sensing communication: Bradyrhizobium-Azospirillum interaction via N-acyl-homoserine lactones in the promotion of soybean symbiosis. Journal of Basic Microbiology, v.59, n.1, p.38-53, Out. 2018. DOI: 10.1002/jobm.201800324.
  18. GALINDO, F. S.; FILHO, M. C. M. T.; SILVA, E. C.; BUZÉTTI, S.; FERNANDES, G. C.; RODRIGUES, W. Techinical and economic viability of cowpea co-inoculated with Azospirillum brasilense and Bradyrhizobium spp. and nitrogen doses. Revista Brasileira de Engenharia Agrícola e Ambiental, v.24, n.5, p.304-311, Mai. 2021. DOI: https://doi.org/10.1590/1807-1929/agriambi.v24n5p304-311.
  19. GALINDO, F. S.; PAGLIARI, P. H.; SILVA, E. C.; SILVA, V. M.; FERNANDES, G. C.; RODRIGUES, W. L.; CÉU, E. G. O.; LIMA, B. H.; JALAL, A.; MURAOKA, T.; BUZETTI, S.; LAVRES, J.; TEIXEIRA. M. C. M. Co-inoculation with Azospirillum brasilense and Bradyrhizobium sp. Improves Nitrogen Absorption and Yield in Field Grown Cowpeas and Did Not Change N-Fertilizer Recovery. Plants, v.11, n.2, p.1847.Jul. 2022. DOI: 10.3390/plants11141847
  20. GOPALAKRISHNAN, S.; SATHYA, A.; VIJAYABHARATHI, R.; VARSHNEY, R. K.; GOWDA, C. L. L.; KRISHNAMURTHY, L. Plant growth promoting rhizobia: challenges and opportunities. Biotech, v.5, p.355-377, Ago 2015. DOI: 10.1007/s13205-014-0241-x
  21. HUNGRIA M, NOGUEIRA MA. Tecnologias de inoculação da cultura da soja: mitos, verdades e desafios. In: KAPPES C (Ed.). Boletim de Pesquisa 2019/2020. Rondonópolis: FUNDAÇÃO MT, 2019. p. 50-62.
  22. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA – EMBRAPA. Inoculação do milho com as estirpes Ab-V5 e Ab-V6 de Azospirillum brasilense: redução na adubação nitrogenada de cobertura e mitigação na emissão de gases de efeito estufa. Disponível em: <https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1148186/1/Doc-450-OL.pdf >.
  23. JAYATHILAKE, C.; VISVANATHAN, R.; DEEN, A.; BANGAMUWAGE, R.; JAYAWARDANA, B. C.; NAMMI, S.; LIYANAGE, R. J. Cowpea: An overview of its nutritional facts and health benefits. Journal of the Science of Food and Agriculture, v.98, n.13, p. 4793-4806, Abr. 2018. DOI: 10.1002/jsfa.9074.
  24. LEITE, J.; PASSOS, S. R.; SIMÕES, A. J. L.; RUMJANEK, N. G.; XAVIER, G. R.; ZILLI, J. É. Genomic identification and characterization of the elite strains Bradyrhizobium yuanmingense BR 3267 and Bradyrhizobium pachyrhizi BR 3262 recommended for cowpea inoculation in Brazil. Brazilian Journal of Microbiology, v.49, n.4, p.1- 11, Dez 2018. DOI: 1016/j.bjm.2017.01.007.
  25. LIN, S. Y.; HAMEED, A.; LIU, Y. C.; HSU, Y. H.; LAI, W. A.; SHEN, F. T.; YOUNG, C. C. Azospirillum soli sp. nov., a nitrogen-fixing species isolated from agricultural soil. Int. J. Syst Evol. Microbiol. v.65, n.12, p. 4601-4607, Dez 2015. DOI: https://doi.org/10.1099/ijsem.0.000618.
  26. LOPES, A. L. O.; SETUBAL, I. S.; COSTA, N. V. P.; ZILLI, J. E.; RODRIGUES, A. C.; BONIFÁCIO, A. Synergism of Bradyrhizobium and Azospirillum baldaniorum improves growth and symbiotic performance in lima bean under salinity by positive modulations in leaf nitrogen compounds. Applied Soil Ecology, v.180, p.104603, Dez. 2022. DOI: 10.1016/j.apsoil.2022.104603.
  27. MARCOLINI, B. P.; SANTOS, W. F.; DIAS, V. C.; AFFÉRI, F. S.; SOUZA, C. M.; PELÚZIO, J. M. Efeito do nitrogênio e Azospirillum brasilense em teores de proteína do milho na entressafra. Rev em Agronegócio e Meio Ambiente, v.15, n.2, p.88-92, Mar 2022. DOI: 10.17765/2176-9168.2022v15n2e8892.
  28. MARTIN, T. N.; BISON, P. M.; TABALDI, L. A.; LEIVAS, S. J. D.; DEAK, E.; MOTA, M. M.; GRUN, E.; VALDOVINO, V. Soil Acidity Conditioning the Productivity and Physiology of Wheat Inoculated with Azospirillum brasilense. Communications in Soil Science and Plant Analysis, v.53, p. 2082-2093, Abr 2022. DOI: 10.1080/00103624.2022.2070196.
  29. MARTINS L. M.; XAVIER, G. R.; RANGEL, F. W.; RIBEIRO, J. R. A.; NEVES, M. C. P.; MORGADO, L. B.; RUMJANEK, N. G. Contribution of biological nitrogen fixation to cowpea: a strategy for improving grain yield in the semi-arid region of Brazil. Biology and Fertility of Soils, v.38, p.333-339, Ago 2003. DOI: 10.1 007/s00374-003-0668-4.
  30. MORETTI, L. G.; LAZARINI, E.; BOSSOLANI, J. W.; PARENTE, T. L.; CAIONI, S.; ARAÚJO, R. S.; HUNGRIA, M. Can Addional Inoculations Increase Soybean Nodulation and Grain Yield? Soil Fertility and Crop Nutrition, 2018 Mar 110(2):715-721, doi: 10.2134/agronj2017.09.0540.
  31. NORRIS, D. O.; E T`MANNETJE L. The symbiotic specialization of African Trifolium spp. in relation to their taxonomy and their agronomic use. East African Agricultural and Forestry Journal, v.29, n.3, p.214-35, Dez 1964. DOI:10.1080/00128325.1964.11661928.
  32. PÉREZ, J. J.; FRANCOIS, N. J.; MARONICHE, G. A.; BORRAJO, M. P.; PEREYRA, M. A.; CREUS, C. M. A novel green and low-cost chitosan starch hydrogel as a potential delivery system for plant growth-promoting bacteria. Carbohydrate Polymers, v.202, p.409-417, Dez 2018. DOI: 10.1016/j.carbpol.2018.07.084.
  33. PINZÓN, S. H. E.; ALMANZA, P. J.; CELY, R. G. E.; SERRANO, C. P. A.; AYALA, M. G. A. Correlation between SPAD and chlorophylls a, b and total in leaves from Vaccinium corymbosum L. cv. Biloxi, Legacy and Victoria in the high tropics. Rev. Colomb. Cienc. Hortícolas, v.16, n.2, p.14693, Mai 2022. DOI: 10.17584/rcch.2022v16i2.14693.
  34. PRANDO, A. M.; OLIVEIRA, A. N.; LIMA, D. E.; POSSAMAI, E. J.; REIS, E. A.; NOGUEIRA, M. A.; HUNGRIA, M.; HARGER, N. CONTE, O. Coinoculação da soja com Bradyrhizobium e Azospirillum na safra de 2018/2019 no Paraná. Circular técnica - Embrapa Soja, v.156, p.1-20, Nov 2019.
  35. RAMAKRISHNA, W.; YADAV, R..; LI, K. Plant growth promoting bacteria in agriculture: two sides of a coin. Applied Soil Ecology, v.138, p.10-18, jun 2019. DOI: 10.1016/j.apsoil.2019.02.019.
  36. SANTOS, R. S.; FERREIRA, J. S.; SCORRIZA, R. N. Isolamento e caracterização de estirpes de rizóbio na espécie Pterogyne nitens Tull. Revista de Ciências Ambientais, v.8, n.1, p. 71-76, Ago 2014.
  37. SENA, P. T. S.; NASCIMENTO, T. R.; LINO, J. O. S.; OLIVEIRA, G. S.; FERREIRA, N.; ALVES, R.; FREITAS, A. D. S.; FERNANDES-JÚNIOR, P. I.; MARTINS, L. M. V. Molecular, Physiological, and Symbiotic Characterization of Cowpea Rhizobia from Soils Under Different Agricultural Systems in the Semiarid Region of Brazil. Journal Of Soil Science and Plant Nutrition, v.1, p.1-10, Mar 2020. DOI: https://doi.org/10.1007/s42729-020-00203-3
  38. SIEBRECHT, N. Sustainable Agriculture and Its Implementation Gap—Overcoming Obstacles to Implementation. Sustainability, v.12, n.9, p.3853, Mai 2020. DOI: 10.3390/su12093853
  39. SILVA, A. F.; CARVALHO, M. A. C.; SCHONINGER, E. L.; MONTEIRO, S.; CAIONE, G.; SANTOS, P. A. Doses de inoculante e nitrogênio na semeadura da soja em área de primeiro cultivo. Bioscience Journal, v.27, n.3, p.404-412, jul 2011.
  40. ZILLI, J. E.; VALICHESKI, R. R.; RUMJANEK, N. G.; SIMÕES-ARAÚJO, J. L.; FREIRE, F. F. R.; NEVES, M. C. P. N. Eficiência simbiótica de estirpes de Bradyrhizobium isoladas de solo do Cerrado em caupi. Pesquisa agropecuária Brasileira, v.41, n.5, p.811-818, Maio 2006. DOI: 10.1590/S0100-204X2006000500013

Como Citar

Amorim Barros, B. G., dos Passos , P. P., Barbosa de Jesus Júnior , P. R., Rodrigues Félix, A. T., Santos Oliveira , A. dos, Souza Cassimiro, N. de, & Vieira Martins, L. M. (2024). A co-inoculação de (Azospirillum brasilense) e (Bradyrhizobium spp.) promove crescimento em Feijão-Caupí no Semiárido Baiano. Scientific Electronic Archives, 17(5). https://doi.org/10.36560/17520241968